

Jenkins, Docker and
DevOps: The Innovation
Catalysts

Table of Contents

INTRODUCTION.. 3

DOCKER, JENKINS AND CONTINUOUS DELIVERY .. 4

GETTING SOME PERSPECTIVE ... 5

From a Jenkins Perspective... 5
From a Docker Perspective... .. 6
Taken Together: (Jenkins + Docker) = CD .. 7

NEXT GEN CI/CD: USE CASES, BEST PRACTICES AND LEARNING.. 8

In the Beginning was the Container… ... 8
Next Gen CI - Jenkins on Docker ... 10
Next Gen CD - Orchestrating Docker... 11
Entering IT Automation with Continuous Delivery ... 11
From Images to Gold Images ... 15

WHAT’S NEXT... 18

 3

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Introduction

Historically we have seen waves of innovation hit the Information Technology industry.
Typically, these have happened separately in the areas of infrastructure (mainframe to
distributed to virtual), application architecture (monolithic to client-server to n-tier web) and
process/methodology (ITIL, etc.). But if you look around, you will see that right now we are in
the midst of what is not just another wave in one of these areas, but a complete
transformation which encompasses all three areas at once. We are watching the infrastructure
space be completely disrupted by lightweight container technology (best represented by
Docker). We are seeing application architectures moving to a distributed microservices model
to allow value-added business logic to be quickly added or changed in order to better serve the
end-user. Additionally, we are seeing bold new concepts such as “collaboration,” “failing is
okay, just fail fast,” “over communicate with feedback,” take over the IT organization in the
hot methodology trends of DevOps and continuous delivery (CD). The really interesting part is
that these three waves are feeding on each other and amplifying the ultimate effect on IT: the
ability to provide more value faster to the business/consumer/user.

In this paper, we will discuss how two of these areas (Docker and CD) are coming together to
accelerate the innovation that can happen in microservices-based applications. This radical
change in IT tooling and process has the potential to have a huge impact on all of us. The
combination of continuous delivery being executed on applications running in Docker
containers will allow us to see, in enterprise IT, the exponential growth in innovation that we
have seen in consumer and mobile applications over the past five years.

 4

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Docker, Jenkins and Continuous Delivery
In just two years, Docker has grown from nothing to more than 100,000 "Dockerized"
applications and close to 1,000 contributors. It has heavily rocked the IT boat and pushed the
application architecture wave around microservices-based designs to a new reality.
Lightweight container technologies - particularly Docker - are rapidly changing the way we
build, deliver and update software. Docker brings a new level of simplicity to defining and
creating applications or services by encapsulating them in containers. That simplicity lets
developers and operations personnel use Docker containers as a common currency,
eliminating a source of friction between development and operations. While Docker is an
amazing success story, the way people use Docker in their development and delivery processes
is still very much a work in progress. Companies using Docker are discovering how it fits within
their own environments, as well as how to use Docker and Jenkins together most effectively
across their software delivery pipelines.

Meanwhile, since its start a decade ago Jenkins has defined what continuous integration (CI) is
all about, and is now experiencing tremendous acceleration in adoption as the market moves
towards DevOps and continuous delivery (CD). Both of these trends are all about process
automation, shared goals and the versioning of everything from code to infrastructure
configuration. The “automation of everything” plays to a core strength of Jenkins – its ability to
automatically orchestrate any number of processes utilizing any number of technologies, such
as Docker, throughout the software lifecycle. Jenkins is currently known to operate on at least
100,000 clusters, 300,000 servers and offers more than 1,000 plugins providing comprehensive
integration with third-party systems.

As the company helping to drive Jenkins adoption across enterprises, CloudBees has been in
the middle of the excitement and discovery process around how to best leverage containers.
This experience has informed us as to how Jenkins can better enable people to take advantage
of Docker, and how to transform the excitement in the industry and our hard-won discoveries
into concrete features in Jenkins that make the end-to-end software delivery process faster,
predictable, manageable and drama-free. That’s what developers and operations people want.

Let’s take a look at the state of the Docker + Jenkins world today. What does the combination
bring to the table and how are people using them together? Then we’ll take a look at what
CloudBees and the Jenkins community have done to make Jenkins the obvious choice to use
with Docker to as the foundation for CI and CD. Finally, we’ll discuss what remains to be done
to complete the vision of a world in which Jenkins and Docker, together, bring software
development and delivery processes to an entirely new level.

 5

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Getting Some Perspective
One of the most interesting things about the Docker phenomenon is how it helps facilitate the
way development and operations teams work together by changing the abstraction level from
an application binary to a container level. Jenkins has a similar impact on development and
operations teams. Jenkins was originally created as a CI server - a server that builds, runs tests
and reports results as source code or configuration changes. Today, however, it is very
commonly used to orchestrate the entire software delivery process across an organization and
between teams. The introduction of the Workflow feature in Jenkins has made it simple to
define and share the processes involved in a full CD pipeline. Thus, like Docker, Jenkins has
raised the abstraction level used by Jenkins users from a build job to a workflow, and it allows
those workflows to interact with surrounding systems using a domain-specific language (DSL).
At its heart, a DSL simply allows you to interact with surrounding systems using the familiar
nouns and verbs those surrounding systems understand.

From a Jenkins Perspective...
One way to view Docker from a Jenkins perspective is simply as a different, improved
packaging approach, in much the same way that applications have been packaged in RPMs or
other mechanisms. From that standpoint, automating the package creation, update and
maintenance process - particularly for complex projects - is exactly the kind of problem Jenkins
was made to address.

 6

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Yet, Docker is a lot more than a packaging approach, because it exposes a toolset and API
around the container. That toolset and API is constantly being extended by its growing
ecosystem. Because Docker encapsulates both the application and the application's
environment or infrastructure configuration, it provides a key building block for two essential
aspects of a continuous delivery pipeline:

 First, Docker makes it easier to test exactly what you deploy. Developers deliver
Docker containers or elements that are consumed by other containers; IT operations
then deploys those containers. The opportunity to screw up in a handoff or reassembly
process is reduced or eliminated. Docker containers encourage a central tenet of
continuous delivery - reuse the same binaries at each step of the pipeline to ensure no
errors are introduced in the build process itself.

 Second, Docker containers provide the basis for immutable infrastructure.
Applications can be added, removed, cloned and/or its constituencies can change,
without leaving any residues behind. Whatever mess a failed deployment can cause is
constrained within the container. Deleting and adding become so much easier that you
stop thinking about how to update the state of a running application. In addition, when
infrastructure can be changed (and it must change) independently of the applications
that the infrastructure hosts - a very traditional line between development and
operations responsibilities - there are inevitable problems. Again, Docker’s container-
level abstractions provide an opportunity to reduce or eliminate the exposure. This gets
particularly important as enterprises move from traditional virtualization to private or
public cloud infrastructure. None of these benefits brought about by the use of Docker
appear magically. Your software and infrastructure still need to be created, integrated
with other software, configured, updated and managed throughout their lifetimes.
Docker gives you improved tools to do that, especially when combined with the power
of Jenkins to automate these processes.

From a Docker Perspective...
From a Docker perspective, at a very basic level Jenkins is just another application that should
be running in a Docker container. Jenkins itself needs to be updated and often run in a specific
environment to be able to test properly. For example, integration tests may require access to
backend systems, necessitating creation of a Docker image environment that has strict access
controls and strong approval processes for updating. Environment and configuration changes
should always result in a Jenkins build to produce new images.

But Jenkins is much more than that, it is the application that passes validated containers
between groups in an organization. Jenkins also helps build higher level testing constructs - for
example, integration tests may require access to backend systems, necessitating creation of a

 7

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

set of Docker Compose images that Jenkins can bring up, run tests against and bring down.
Jenkins can ultimately create gates that make sure that only containers that have been
properly pre-tested and pre-approved, make it to the next step. In a world where Docker
containers are so easily created and multiplied, the role of such a validation agent cannot be
minimized.

Taken Together: (Jenkins + Docker) = CD
Today, many Jenkins users take advantage of the combination of Docker and Jenkins to
improve their CI and CD processes. They can do this because of Jenkins extensibility and the
flexibility with which Docker can encapsulate deliveries. As you might expect, two of the
leading proponents of using Docker and Jenkins together are: the Docker team and the Jenkins
team! The Docker team uses Jenkins and Docker to test Docker. While the Jenkins team has
used Jenkins to build Jenkins for a very long time, they also now use Docker as an integral part
of the test and delivery process of the jenkins-ci.org web site, in combination with Puppet.
Many other people have shared their experience in blogs and brief articles. As this experience
has grown, CloudBees and the Jenkins community have identified some areas that would
greatly improve the automation and management process when using Docker and Jenkins
together – and developed solutions to address those areas. The goal has been to minimize the
handcrafting and guesswork involved in figuring out how to make the best use of two tools, in
combination. The new capabilities have been released as part of open source Jenkins, together
with key integrations into the CloudBees Jenkins Platform. The new functionality includes:

 The ability for Jenkins to understand and use Docker-based executors, providing
improved isolation and utilization

 Easy interaction with Docker image repositories, including Docker Hub, making it
possible to store new images built by Jenkins, as well as load images so they can be
used as part of a Jenkins job

 Rich Jenkins workflow integration with Docker, making it possible to orchestrate
builds, tests, deployments of any applications - including but not limited to Docker
images - by using Docker environments

 Extension of Jenkins native fingerprinting capability to enhance tracking of Docker
images across development and delivery processes, making it possible to track
complete delivery processes, from code to production

The design consideration behind the Jenkins/Docker integration was to consider Docker
images as a first-class citizen of any Jenkins operation, from CI activities - where Jenkins has
the ability to operate on sanitized and isolated Docker images - to CD activities, where much of
the work implies the delicate orchestration of multiple Docker containers along with third-

https://blog.jessfraz.com/post/dogfooding-docker-to-test-docker/
https://registry.hub.docker.com/repos/jenkinsciinfra/

 8

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

party integrations for processes such as unit testing, load testing, UX testing, etc. The tight
integration of Jenkins and Docker means neither feels like an add-on to the other. Instead,
they form a cohesive approach to CI and CD that solves problems for both development and
operations.

Next Gen CI/CD: Use Cases, Best Practices and
Learning
In this section, we will drill down into key use cases related to Jenkins and Docker, and offer
best practices for them.

Because Jenkins and Docker are two very flexible technologies, use cases can quickly become
confusing: while each use case is based on a specific articulation of Jenkins and Docker, they
are doing so in a very different fashion, in order to achieve different objectives. For that reason,
we have split the use cases into three sections:

1. The first section will focus on building Docker images. This is a trivial use case, but a
very important one as it serves as the foundation of anything related to the usage of
Docker (with or without Jenkins). Essentially, in a Docker world, everything starts with a
container... so they must be built!

2. The second section will cover CI use cases and how Docker can help improve CI
independently of whether your application will ultimately be deployed as a Docker
image or not. In this section, Docker is mostly defered as an underlying (and
transparent) layer that enables Jenkins to deliver faster, safer, more secure and more
customizable CI.

3. The last section will cover typical CD use cases and how you can use Jenkins to
orchestrate end-to-end pipelines based on Docker images/applications. Put simply, this
is the future of software delivery.

In the Beginning was the Container…
Anything in Docker, will obviously start with the creation of a Docker image. Docker images
are the new Lego blocks of IT. As such, it is essential for the engine that will be responsible for
building them to be smart about it, highly customizable, secure and stable. The last point is
very important and often dismissed: if everything in your IT is dependent on the creation of
Docker images, your Docker builder becomes as critical as your production environment. Need
to fix a security bug in production? If you can’t properly rebuild an image as part of your
company process, you can’t fix your production environment, plain and simple.

 9

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Consequently, Jenkins acts as the ideal tool for that. Jenkins has been extensively used in all
kinds of environments for more than a decade and has proved to be extremely robust and
stable. It also features advanced security features (such as the Role-based Access Control and
clustering features, offered by CloudBees).

The overall philosophy of building containers in Jenkins is based on the idea of tracking the
dependencies between the pieces that make up a final application (which could be composed
of multiple containers). Whenever part of the source code or one of the source golden images
are used to run the image changes, both development and operations have the option to
automatically rebuild a new image.

Furthermore, Jenkins is tightly integrated with all Docker repositories on the market, making it
possible not only to securely manage credentials used to store generated images, but also to
track the entire process, from the trigger that initiated the generation of a new image, to the
actual location where this image is being used. Full traceability, at all times.

 10

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Next Gen CI - Jenkins on Docker
One of the most immediate benefits you can get out of using Jenkins and Docker, is to improve
the way you run Jenkins and its build servers. Here, we are talking about how your existing
non-Docker application development (such as mobile apps, desktop apps, etc.) can also benefit
from Docker, which may be more important for many companies.

Companies doing CI maintain a cluster of Jenkins “slave machines,” on which a number of
virtual slots, or “executors,” are defined, and can be used by a Jenkins master for performing
build/test jobs. The number of overall executors in a Jenkins cluster defines how many
concurrent jobs will be able to execute at any point in time.

The typical problems with such a setup is that build processes will essentially be sharing
resources concurrently. This can create different categories of issues:

 Transient: Singleton resources can be requested at the same time by concurrent jobs
(network resources, files, etc.). This would typically cause at least one of the concurrent
jobs to fail intermittently. (The same job executing at a different time or on a different
machine could properly execute.)

 Persistent: A build job could make changes to the hosting environment. These changes
can disrupt a future execution of that build or of another build.

Both categories of problems incur important costs for the DevOps team: issues have to be
debugged and validated, environments have to be regularly debugged and “sanitized.” But
more importantly, such errors, although not related to actual bugs in the code being tested,
lead to teams not fully trusting the CI results. Whenever a job fails, the typical reaction is
usually “probably not my problem, surely an environment issue, I’ll wait to see if it persists.”
The problem with that attitude is that the more one waits, the more other code changes
happen, which are all potentially responsible for truly breaking a build, hence diluting the
responsibility of fixing the problem.

 11

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

To remedy that situation, Jenkins’ in-depth Docker integration makes it possible to run your
build in its own isolated Docker container, rather than on a simple executor on a shared OS.
Even if your application has nothing to do with Docker or will not be delivered as a Docker
image itself, it will happily run inside a container. Your testing will behave as if you have a
whole computer to yourself, oblivious to the fact that it actually is confined in a jail cell. The
Docker image essentially becomes an ephemeral executor entity that gets efficiently created
and discarded 100 times a day.

Using Docker for your CI fixes the above issues - both transient and persistent - as each job
executes in a fully-virtualized environment that’s not visible or accessible by any other
concurrent build and each executor gets thrown away at the end of each build (or reused for a
later build, if that’s what you want).

Furthermore, some companies are looking to completely isolate teams for confidentiality or IP
reasons (i.e., source code/data/binaries from Team A should not be visible to Team B). In the
past, the only way to obtain that behavior was to completely segregate environments (masters
and slaves), and possibly implement additional security measures (firewalls, etc.) By basing
your CI on Docker, builds executing on slaves are fully isolated and do not pose any risks.
Furthermore, the usage of features such as Role-based Access Control from CloudBees, makes
it possible to share masters as well, by setting proper security rules in place.

Last but not least, IT Ops no longer needs to be in charge of managing build environments and
keeping them clean, a tedious but critical task in a well-run CI/CD environment. Developers and
DevOps can build and maintain their customized images while IT Ops provides generic vanilla
environments.

For anybody doing CI today, moving to Docker images represents low-hanging fruit that
comes with very little disruption, but lots of advantages.

Next Gen CD - Orchestrating Docker

Transforming IT Automation with Continuous Delivery
Virtually every IT organization today is driving toward increased automation and exploring
ways to achieve CD. There is an incredible array of services, tools and technologies available to
these organizations as they strive to meet their goals for faster delivery of higher quality
software. Both Jenkins and Docker have been embraced by organizations because they help in
specific ways, while providing a real foundation to build further. Jenkins, in particular, excels in
its ability to integrate with existing systems, and to orchestrate work broadly across multiple
organizations. The introduction of native Workflow capabilities within Jenkins was the key to
making this happen.

http://jenkins-ci.org/content/workflow-plugin-10

 12

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Photo courtesy of Steve Jurvetson, via Flickr

One of the key requirements for end-to-end IT automation - real industrialization of IT - is to
move work reliably across a complex organization, integrating elements from many
contributors and using a vast array of tools. The same pattern of requirements exists for active
open source projects like Jenkins and Docker, but the constraints and cultures within
enterprises are often the controlling factors in implementation.

The practices and features for using Docker and Jenkins together, which are outlined in this
paper, are the foundation for much broader application as CD practices mature over the
coming years. We talked earlier about how automation is evolving. To dig a little deeper, each
dot in the diagram on page 5, was typically born in a larger organization as a silo of
automation.

 13

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Then, as automation processes grow across an organization or as the complexity of a delivery
increases or dependencies multiply, shared repositories were put in place to provide cross-
organizational access and central management.

 14

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

Jenkins initially played a central role in automating the flow of artifacts between these islands
of automation, by providing simple triggers to cause actions when changes took place, along
with richer constructs for defining flows. However, what developers and operations users
needed was a simpler way to define, version and reuse workflows themselves, not just triggers.
In addition, rather than just capturing binaries of libraries and application artifacts, developers
and operations users needed simpler ways to capture application containers in environments -
Docker’s forte.

 15

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

The combination of Jenkins with Workflow, the new Docker plugins and Docker provides a new
level of abstraction when constructing and operationalizing CD pipelines. These tools help
developers and operations personnel speak the same language, share the same processes and
meet the same goals as a team. Furthermore, as a pipeline executes, not only can it be spread
over the cluster, but it will leverage a key feature of Jenkins: its ability to integrate with
hundreds of tools on the market. This is especially important in an enterprise environment
where many different tools have typically been accumulated over time and have to be
integrated into the overall process.

From Images to Gold Images

It is important to fully capture the benefits that Docker brings when added to your continuous
delivery practices. If you focus solely on Docker as a packaging mechanism, you might think
the impact will merely be about the last mile of how your application gets pushed to
production. Yet, since Docker fundamentally improves the way you package, maintain, store,
test, stage and deploy your applications, Jenkins makes it possible to capture those

 16

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

improvements all along the application lifecycle and provides key advantages all along your CD
pipeline.

In a traditional environment, application source code is stored in a repository and, as Jenkins
executes its CD pipeline, it interacts with several tools (Chef, Puppet, Serena) within target
runtime environments for testing, initially, followed by staging and production. But the actual
baking of the application with its environment (operating system, application server, load
balancer) is a concern that usually happens relatively late in the process (which also means the
environment used along the pipeline stages might vary quite a bit).

In the new CD-with-Docker world, the target runtime environment isn’t an afterthought that’s
left to the IT Ops team at a late stage of the CD pipeline. Instead, the runtime environment is
closely associated to the application source code from the start. At the beginning of any CD
pipeline, you’ll find a set of code repositories as well as a set of binary repositories containing a
number of IT Ops-approved Docker images for the various environments required (operating
system, application servers, databases, load-balancers, etc.).

Very early on in the pipeline process, Jenkins will be baking the application with its target
Docker environment and produce a complete executable application as another Docker image.
This will be the runtime version of your application. This runtime will be stored in a company
repository that contains the archive of your Docker-ized target runtime applications. You can
see your overall CD process as having several code and binary repositories as input and while
the pipeline executes, several new Docker images - the applications - to be generated. Those
application images might end up being wrapped together as a set of microservices (for
example, as in a Kubernetes deployment) or as a traditional monolithic application in one
container. Once an application image has been successfully built, it can be stored in the
company repository as a “golden image” and serve as a potential candidate for a future
deployment to production (remember: CD doesn’t automatically push to production - that
would be continuous deployment - but makes sure your application is in a release-ready stage
at all times).

From a process standpoint, this brings a lot of advantages:

 First, since your application gets packaged in its final form very early on, it will
travel through all testing and staging steps in that form. This highly reduces the risk
of having problems in production not show up in previous steps because of a change in
the runtime environment between those two stages.

 Second, updating the environment itself is much more formalized, yet simplified. In
a typical CD process, the main trigger of a new CD pipeline will be a change in the

 17

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

source code of the application. This will initiate a web of tests, integrations, approvals
and so on, which, taken together, comprise the CD pipeline. However, in case one
wants to update the environment itself (such as patching the operating system), this
would happen separately in parallel to the application build process and it is only once
the CD pipeline is executed again that the updated bits will be picked up. As we have
seen, this could happen late in the pipeline execution, hence an application could end
up not going through all tests with that new environment. With Docker, not only will a
code change initiate a CD pipeline execution, but uploading a new Docker base image
(such as an operating system) will also trigger the execution of any CD pipeline that is a
consumer of this image. Since Docker images can depend on each other, patching an
operating system might result in the automatic update of database and application
server images, which will in turn initiate the execution of any pipeline that consume
those database/application server images! A CD pipeline is no longer just for developers
and their source code. Developers and IT Ops now share the exact same pipeline for all
of their changes. This has the potential of hugely improving the safety and security of
an IT organization. For example, when facing a critical and widely deployed security
issue (such as the Heartbleed bug), IT Ops teams often struggle in making sure that
absolutely ALL machines in production have been patched. How to make sure that no
server gets forgotten? With a Docker-based CD pipeline, any environment dependency
is explicitly/declaratively stated as part of the CD pipeline.

In this world where countless Docker images are going through various phases of the CD
pipeline and getting copied from one system to another, it becomes very hard to keep track of
what processes each of those images went through. Docker images get transformed and
change their names all the time as they go through the pipeline. This is where the “traceability”
features in Jenkins shine. Jenkins unambiguously keeps track of exactly which images are
transformed to what, who made what changes in them, what tests were run, where they were
used, who performed any manual approvals and so on. And this all happens regardless of
whether they are stored in S3, Docker Hub or a file in NFS. In addition to being a useful trigger
condition for automation (i.e. if an image passes these tests, start that process), it is also a
treasure trove for a forensic analysis, months or even years after the application has been
pushed into production. This information removes a lot of guesswork from troubleshooting
and defect analysis, as well as helps you to track the propagation of important changes, such
as vulnerability fixes. This can prove very important, for example in the case of a security
breach when you need to precisely identify when a specific vulnerability was released out into
the wild.

 18

JENKINS, DOCKER AND DEVOPS: THE INNOVATION CATALYSTS

What’s Next
As experience with Docker-based applications grow, the industry will quickly evolve to a place
where a single container delivers an application or service within a microservices-based
architecture. In that microservices world, fleet management tools like Docker Compose, Mesos
and Kubernetes will use docker containers as building blocks to deliver complex applications.
As they evolve to this level of sophistication, the need to build, test and ship a set of containers
will become acute. Jenkins Workflow Docker DSL is already designed for such a use case.
Building on the robust functionality already delivered for Docker, the Jenkins community has
now also developed support for Kubernetes.

Other use cases remain to be discovered: one must learn to walk before running. The
heartening thing is that the Jenkins community is on the leading edge of these changes and
responds quickly to technology trends. It is almost as if Jenkins is the one constant thing in the
storm of industry changes that happen around it.

CloudBees, Inc.
2001 Gateway Place, Suite 670W • San Jose, CA 95110 • USA
www.cloudbees.com • info@cloudbees.com

CloudBees Jenkins Platform is built on top of open source Jenkins, an independent community project. Read more at:
www.cloudbees.com/jenkins/about

© 2015 CloudBees, Inc. CloudBees is a registered trademark and CloudBees Jenkins Platform, CloudBees Jenkins Enterprise, CloudBees
Jenkins Operations Center and DEV@cloud are trademarks of CloudBees, Inc. Other product or brand names may be trademarks or
registered trademarks of their respective holders. 0815v02

http://www.cloudbees.com/
mailto:info@cloudbees.com
http://www.cloudbees.com/jenkins/about

