National Aeronautics and Space Administration

Solar Electric Propulsion

Technology Development

Chemical Propulsion

- Chemical propellant provides the high thrust to weight required to escape earth's gravity well
- Chemical propellants convert the stored energy into kinetic energy
- <u>However,...the inherent energy in the</u> propellant is a limiting factor
 - As the propellant energy defines exhaust velocity and hence ISP
 - While the path to reducing propellant mass is typically to increase specific impulse/exhaust velocity

Solar Electric Propulsion

- Solar Electric Propulsion (SEP) uses solar energy from solar arrays converted into electricity.
- Electricity is then used to ionize and accelerate propellant to produce thrust.
- SEP Fuel efficiency and Thrust
 - SEP has higher specific impulse,....1.5 to 10X more efficient than chemical
 - Specific impulses range from sub-1000 to over 7,000 sec. depending on type of thruster
 - Thrust is weaker, but can provide thrust over a longer duration
 - SEP thrust level is directly tied to the available power on the spacecraft
 - If mission is not time sensitive (wks/months vs days to orbit transfer), SEP uses less fuel to same destination
 - Less fuel can reduce weight (20-50%), which can reduce launch costs
- Mission life
 - SEP's high fuel efficiency enables longer mission life
 - Ideal for deep space, long-life missions, station keeping

EP Coming of Age,....or the Advanced EHF Story

August 14, 2010: Launched on a ULA Atlas 531 with 3 Aerojet solid boosters and a Centaur upper stage

Typical launch drops in a Geosynchronous Transfer Orbit (GTO)

- 185 km (115 mi.) x 36,000 km (22,200 mi.) x 27 deg inclination
- Burn Liquid Apogee Engines (LAE) to circularize at GEO
- > Typically half the launch mass is propellant for this burn

AEHF so large, planned to use Electric Propulsion Hall thrusters to do partial orbit transfer

- Initial GTO is 225 km x 50,000 km
- LAE burns raise perigee to 19,000 km
- Hall thrusters do the rest
- AEHF uses 2500 kg propellant to get to orbit, but saves nearly 1000 kg over full chemical

Los Angeles, We Have a Problem

- <u>August 15, 2010</u>: Attempted to ignite apogee engine, shut down after a few seconds as spacecraft detected a problem. Not yet highly concerned
- <u>August 17, 2010</u>: Attempted to ignite a second time, also shut down.
 Signs of overheating.
- Tiger team rapidly determined that there was a propellant line blockage and further attempts at firing could cause an explosion.
- Spacecraft is losing 5 km altitude a day and accelerating.
- August 22, 2010: Plan formulated to save the spacecraft:
 - Use 22 N (5 lb.) hydrazine engines to raise perigee to avoid decay
 - Use .25 N (0.06 lb.) Hall thrusters to perform most of the transfer
- <u>September 22, 2010</u>: Perigee is raised by the hydrazine engines to 4900 km safe from orbital decay from aerodynamic drag.
- October 24, 2011: Hall thrusters complete transition from GTO to GEO
 - What was going to take 3 months took a little over a year
 - The spacecraft had a launch mass of over 6 metric tons and was lugging almost 500 kg of useless oxidizer
 - If the original plan was to use Hall thrusters for the entire orbit raising operation, it would have saved several additional tons of propellant

The Hero

• There have been multiple architecture studies where SEP has "traded well"

- "Electric Propulsion is key for achieving affordable missions to an asteroid or similar longrange destination." -- Human Space Exploration Framework Summary 2011
- "Electric Propulsion is enabling for this mission. It cannot be done with other propulsion types." -- ARRM MCR 2013
- Human Exploration of Mars DRA 5.0
 - Combined SEP-Chem for Piloted Mars Mission (GRC/JSC COMPASS Study)
 - SEP-Chem with Iodine Propellant for Piloted Mars Mission (GRC/MSFC COMPASS Study)
- SEP reduces the cost of missions ranging from commercial applications in LEO to Manned Missions to Mars
- SEP's major benefit over other in-space propulsion alternatives is more efficient use of propellant
 - Reduced wet mass reduces Initial Mass to LEO (IMLEO)
 - Reductions in IMLEO in turn reduce the number or size of launch vehicles

SEP Can Revolutionize Space Exploration in the 21st Century

National Aeronautics and Space Administration

Left to Right Planning or "What Are We Doing To Get There?"

Technology Investment

- •Current NASA STMD investments include advanced next-gen solar arrays and higher power electric propulsion technologies to enable 30-50kW-class SEP
- •Two teams selected through competitive NRA for development of Solar Array Systems (SAS):
 - Alliant Techsystems Inc. (ATK) & Deployable Space Systems (DSS)
- •NASA in-house EP development of 12-15kW class HET system using either directdrive and/or high voltage power processing unit

ATK MegaFlex:

Partners – AMA, Ball, Emcore, JPL, SpectroLab Start Date: October 2012 Anticipated Duration: 18 months

<u>DSS Roll Out Solar Array (ROSA):</u>

Partners - Emcore and JPL Start Date: October 2012 Anticipated Duration: 18 months

In-house EP System Development:

Partners - GRC and JPL Start Date: January 2012 Anticipated Duration: 36 months

STMD Solar Array System (SAS) Project

□ Solar Array Systems Project

- ATK MegaFlex
 - 12m diameter
 - 20kW EDU
- DSS Roll Out Solar Array (ROSA)
 - 5.5m x 15-20m
 - 20kw-25kw

Common Elements

- High Power Density (150w/kg)
- High stowed power density (>50 kW/ m³)
- 300V buss operation
- Designs extensible to 300kW objective system

ATK MegaFlex

STMD Solar Array Cost Project

Fundamentally change design and manufacturing paradigm

- Space Solar Cell R&D is completely absorbed in making incremental improvements to III-V & IMM
- Larger cell size and ELO techniques to reuse substrate dominate government and industry investment strategies
- <u>Underlying thought processes remain fixated on mass</u> and efficiency
 - May make sense when 25kW mission costs > \$1B
 - May not make sense when 300kW mission costs < \$1B

New design concepts must be considered:

- Use semi-conductor industry processes
- Modularize panels
- Create backplanes via "PCB" construct
- Accept less efficiency for lower cost and mass parity
- Miniaturization of cells lends itself to multiple benefits
 - Less waste in manufacturing
 - Better thermal properties
 - Better concentrators
- Remove lattice and current matching constraints with mechanical stacking

Over 50% of costs are in array layup, and they are dominated by <u>Touch Labor</u>

"Smart Array" Technology

- Cells connected in parallel then in series
- Cells chosen and reconfigured on the fly
- ➢Reduces amount of materials used
- Eliminates the need for Bypass Diodes = Mass Savings

Thrusters

- Present TRL 9 "Industry Benchmark" is the Aerojet BPT-4000
 - 4.5-kW, 2000-s Hall thruster
- AISP Thruster Focused on future HEOMD Applications
 - Magnetically Shielded Hall Effect Thruster
 - 12-15kW
 - 2000s-3000s ISP
- Miniature Electrospray Propulsion (MEP) Thruster
 - Small Satellite mN thrust applications
 - Potential to grow to larger missions

Power Processing Unit (PPU)

- High voltage input
- Direct Drive Unit (DDU) research
- High Operating Temperature

NASA's 3000-s Isp, Magnetically-shielded Hall Thruster

Future Technology Development

Large autonomously deployable solar arrays:

- 300kW class array systems (150kW per wing)
- Increased packing density and lower mass arrays
- Reductions to cost of arrays
- Increased operational voltage

High Power PPU

- ≻ High efficiency operation (> 96%)
- ➢ High temperature operation (~100⁰C)
- Space qualified parts for 300V operation

High Power Thruster

- 100 kW Class Thruster
- > 20,000hr 40,000hr Life
- Variable ISP
- Alternate Propellants

STMD's SEP Tech Demo Mission (TDM) Objectives

Technology

Demonstrate enabling SEP technologies in all relevant space environments (from LEO to beyond GEO)

- Next gen electric propulsion
- Solar arrays
- High voltage
- Tech infusion

Integrated System

Solve the system technology and operational issues related to implementation of a high performance SEP vehicle

- Power system dynamic behavior
- Thermal control
- Attitude control

Extensibility

Provide an evolutionary step to the high power SEP systems needed for future human exploration

- Prove low thrust systems can deliver heavy payloads
- Build upon the recent success of AEHF
- Inform future exploration architecture studies
- · Retire risks associated with Van Allen radiation belts

Capability

Provide a valuable beyond-LEO payload delivery capability

- Wide range of potential missions (HEOMD, SMD, DoD, Commercial Space)
- Enables cost savings via launch vehicle step down
- Operational capability enables partnership opportunities

SEP Mission Continuum

www.nasa.gov

ARRM -- STMD SEP TDM Synergy

- STMD is seeking an affordable demonstration of high-power, 30- to 50-kW, light-weight solar arrays and high-power electric propulsion
- The electric propulsion technology under development by STMD is enabling for an Asteroid Retrieval Mission
- Combining the SEP Technology Demonstration Mission (TDM) with the Asteroid Retrieval Mission would validate:
 - ✓ High-power, light-weight solar arrays
 - ✓ High-power SEP
 - ✓ Asteroid retrieval

High-Power SEP is enabling for Asteroid Retrieval

30-kW SEP Technology Demonstration Concept (GRC)

Notional SEP Strategic Roadmap

ASA

Summary

- SEP chosen for ARRM because it reduces launch mass, which is a proxy for total mission cost
- SEP is a credible alternative for multiple future Human Exploration Mission Concepts
- STMD is leading the way developing the technologies required to execute these missions concepts

SEP is a Viable, Low Cost Solution for NASA's Future Missions

Back-Up

DRA 5.0 Propulsion Alternatives Explored

"SEP-Chem can deliver crew to an orbit similar to chemical or NTP systems, and can substantially reduce the number of launches... with reasonable transport and stay times." -- AIAA Space 2013 Paper #1648964

Cargo Missions				
Crew Mission	terde			
2037 Conjunction Class "long stay" mission	Chemical Propulsion	NuclearThermal	Nuclear Electric	Solar/Chem
Electric Propulsion Power level	n/a	n/a	2.5MW crew/ 1MW cargo	800kW Solar
Total Mass (t)	~1,250	~890	~770	~780
# Heavy Lift (SLS) Launches	~12	9 (7)	~7	~7
SLS Delivery to LEO (t)	105 & 130	105 (130)	105 & 130	105 & 130
SLS Shroud Dia./Barrel Length	10/22	10/25	10/25	10 / 15
Trip Duration (days to Mars, On Mars, back home)	180 / 500 / 200 880 days total trip	174 / 539 / 201 914 days total trip	309 / 400 / 224 980 days total trip	439 / 300 / 326 1065 days total trip
	Dequires are allert	Number of Jour abox reduced		1.2 ATV lournahaa required to provide

ARRM Reference SEP System

Provide the right balance between performance, extensibility, cost, and schedule

Electric Power System (EPS)

- Solar Array:
 - 50 kW BOL at 1 AU
- Power System Architecture
 - 300 V at max. power point

□ Ion Propulsion System (IPS)

- Electric Thrusters: Hall 10-kW, 3000-s Isp,
- Power Processor Unit (PPU): Conventional
- Xe Tanks: 50-cm dia. seamless Al-lined Composite Overwrapped Pressure Vessels (COPVs)

Example shown with stowed MegaFlex

Delta V, SEP Power, and Specific Impulse

 Sample Comparison -- Earth-to-Mars transit with 2000 kg spacecraft dry mass with varied power and specific impulse

Specific Impulse	4000 seconds	2000 seconds	
Propellant Mass	307 kg	661 kg	
Power	Trip Time		
1.35 kW	9.3 years	2.3 years	
5 kW	2.5 years	229 days	
10 kW	457 days	114 days	
50 kW	91 days	23 days	

Doubling the specific impulse from 2000 to 4000 seconds more than halves propellant required but at the expense of transit time

2000

1.00

0.10

0.01

0

Power, N/kW

Thrust/Thruster

- Sys Eff=100% Cannot Exceed!

× NASA-457M 1st gen (Hall)

VASMIR (Estimated)

4000

6000

Specific Impulse, sec

Lab Model Hydrogen (Arcjet)

- - - Sys Eff=50%

NEXT (Ion) NEXIS (Ion) ---Sys Eff=70%

 NSTAR (Ion) HiPEP (Ion)

PIT Ammonia

8000

BPT-4000 (Hall)

Solar Power Element

- Test ROSA and MegaFlex solar arrays to achieve TRL 5/6: thermal vacuum deployment, vibro-acoustic tests, and vacuum deployed structural dynamics
- Ambient deployment of Mega-ROSA backbone
- Demonstrate Mega-ROSA and MegaFlex extensibility by analysis
- Complete photovoltaic coupon testing (plasma and thermal balance)

Electric Propulsion Element

- Design and fabrication of a 12.5kW magnetically shielded Hall Thruster
 - Baseline performance and wear testing (500+ hrs)
- In-house design, fab, and test of 300V/300V Input/Output (I/O) Power processing unit
- In-house design, fab, and test of a 120V/800V I/O PPU
- In-house design and fabrication of a 300V/300V Input/Output (I/O) Direct Drive Unit (DDU) – Fabrication and testing on hold until completion of PPUs.

Mission Concept Element

- Provide update ARRM SEPM reference configuration based on RCIT direction
- Develop derivative 300kW-class SEP concepst to support ARRM extensibility
- Revised risk assessment for EP, Solar Power, and recommended SEP TDM concepts (including ARRM)
- Completed procurement plan for SA, EP, and Xe COPV flight hardware
 - Draft RFPs w/implementation schedule & supporting materials, tank is JPL task per ARM
- Complete development of 30kW-class partner based SEP TDM concept approach
 - Cost share mission concepts with cost estimate, proposed implementation approach including cost share mechanism, and technical value assessment wrt SEP TDM objectives
- Complete development of $\mu SEPSAT$ mission concept
 - Concept definition including estimated cost and technical value assessment wrt SEP TDM objectives
- Complete development of solar array wing mission concepts
 - Concepts for flying solar array wing on operational mission including estimated cost and technical value assessment wrt SEP TDM objectives