
Usable Crypto:
Introducing miniLock

Nadim Kobeissi
HOPE X, NYC, 2014

2012

“Browsers are an environment
that is hostile to cryptography”

3

Malleability of the
JavaScript runtime.

The lack of low-level
(system-level)
programming access.

DOM-style vulnerabilities
(XSS)

“Code Delivery is a Chicken-
Egg Problem”

What prevents web
app code from being
intercepted and
modified by a “man in
the middle”?

Fine, why not use SSL?

4

Quote from popular anti-JS
crypto article

5

“You can [use SSL]. It's harder than it sounds, but you [can] safely transmit
Javascript crypto to a browser using SSL. The problem is, having established a secure

channel with SSL, you no longer need Javascript cryptography; you have "real"
cryptography.”

What the author ignores:
Unlike SSL, JavaScript cryptography

protects data from server access.
Also claims people are using JS Crypto to get around deploying SSL (???)

No One Saw the Value of
JavaScript Cryptography

JS shifting from language of the
web to language of everything

Making JS crypto real means
making crypto work in the
world’s most accessible
language

Huge privacy/security gains in
a usable environment

6

2013

Cryptocat: Encrypted Chat in
the Browser

Open source app with over
200,000 users.

Goal: make encrypted chat
accessible, fun, and easy to
use.

Accessible no matter your
background.

8

Basic Needs

Secure cryptographic
primitives (AES, SHA2,
ECDH).

Secure pseudorandom
number generation.

Secure code delivery.

9

Cryptographic Primitives

Public key cryptography
and digital signature
algorithms depend on
numbers much larger
than 64-bit floating point.

Big integers require a
third-party library

10

Cryptographic Primitives

Some algorithms are
computationally
expensive (RSA, Diffie-
Hellman, DSA…)

Web workers came to
the rescue.

11

Cryptographic Primitives

Multiple maturing
libraries: SJCL, Crypto-
JS, OpenPGPJS

Crypto operations
(bitwise, etc.) are
surprisingly cleanly
writeable in JavaScript.

12

13

One Round of AES
in JavaScript and C

14

Thanks, weak typing.

JavaScript Cryptography:
Example of a Bug

Thanks, weak typing.

Secure Pseudorandomness

Math.random()
relies on guessable
entropy sources.

window.crypto.ge
tRandomValues()
doesn’t.

15

Code Delivery

Browser apps. Chrome led
a revolution, model
adopted by Safari and
Opera (Firefox lags behind.)

Great features: Code
signing, enhanced security,
protection against XSS and
in-line eval.

16

Code Delivery
In some cases, signed
browser apps have benefits
over regular desktop apps!

Strong separation from
system level.

Chrome: tab CPU
sandboxing.

17

2014

19

Native cryptographic
primitives!

A solid chance to mitigate
side-channel attacks such
as timing attacks.

(Disclosure: I’m on that
team)

W3C Web Crypto API

20

Missing features:

Modern algorithms
(Curve25519)

Key storage API

W3C Web Crypto API

Sudden Acceptance of JS
Cryptography

Google publishes browser
extension for GPG, own JS
cryptography library

Microsoft publishes Microsoft
JavaScript Cryptography
Library

Thai Duong: “Why JavaScript
cryptography is useful”

21

22

Remaining Problems Today:
Weak Typing

I want ECMAScript to have
optional strong typing.

var k = 5

var number(k) = 5

Both would work, but the second
one can throw a TypeError if you
do k = 5 + ‘Meow’

23

What I’m introducing today

My new usable encryption software.

Let’s innovate on file encryption and sharing.

Let’s make it universally accessible.

24

25

miniLock

File encryption software
that does more with less.

Current status for file
encryption

Main contender: PGP

Main use case: File
attachments

Classic public key
management

26

27

???

Key management is awful

Generating keys

Saving them on disk with
passphrase

Sharing long public keys via email

Storing other people’s keys,
authenticating via fingerprints,
managing keys

28

This sucks.

Generating keys

Saving them on disk with
passphrase

Sharing long public keys via email

Storing other people’s keys,
authenticating via fingerprints,
managing keys

29

This sucks.

Generating keys

Saving them on disk with
passphrase

Sharing long public keys via email

Storing other people’s keys,
authenticating via fingerprints,
managing keys

30

This is not convenient and we
can do a lot better.

Generating keys

Saving them on disk with
passphrase

Sharing long public keys via email

Storing other people’s keys,
authenticating via fingerprints,
managing keys

31

This is not convenient and we
can do a lot better.

Generating keys

Saving them on disk with
passphrase

Sharing long public keys via email

Storing other people’s keys,
authenticating via fingerprints,
managing keys

32

1
2

3

4

No key storage. No key files.

33

miniLock asks you for a
passphrase and uses it to
generate your key identity.

Enter that passphrase on any
computer in the world, obtain
the same persistent key
identity.

Nothing is ever stored anywhere.

miniLock uses miniLock IDs.

34

miniLock IDs are
shareable public keys that
are 44 characters long.

Here’s mine:
9LbEGtYBXRf1s0bIyw
qbhty7uA00TF0XdynV
+fIJlDc=

User flow

35

I enter my passphrase on a
miniLock-capable computer
and get my miniLock ID
(always the same).

I can send files to others using
their ID.

I can receive files sent to my ID.

This sucks less.

36

No private key storage or
management.

No managing long key
identities of others (miniLock
IDs are tweetable!)

miniLock IDs are so small that
they act as their own
fingerprint.

Nice features

37

Easy to use interface

Encrypt files for own
use, decrypt later

Runs on any computer

Nice features

38

Send to multiple recipients (almost
no performance decrease/file size increase)

miniLock IDs of recipients are
anonymized (even from the
recipients)

Fast!

Retains filename on decryption

Best of all

39

Peer-reviewed design
specification

Best of all

40

Peer-reviewed design
specification

Fully audited (Thanks
to Cure53 and OTF)

Unit Test Kit

41

Simulates entire user
flow with randomized
use-cases

Also can run
independent user flow
elements atomically

miniLock in your app!

42

Highly portable

Comes with full design
documents/spec/tests/
reference

Your app can be
miniLock-ready

Everything will be released
today

43

Right after this talk

AGPLv3 license

But first…

How do the internals work?

44

Reliance on elliptic curve
cryptography (specifically,
TweetNaCL)

Mechanisms to evaluate
strength of passphrases/
suggest strong pass phrases

Scrypt.

TweetNaCL

45

“World’s first auditable high-
security cryptographic library”
— Daniel J. Bernstein

Tiny, capable, easy to audit
(fits in 100 tweets)

Ported to JS by Dmitry
Chestnykh

TweetNaCL

46

Offers interface for:

Curve25519 (public key
generation)

Xsalsa20 (Encryption)

Poly1305
(Authentication)

Curve25519

47

32-byte private keys,
32-byte public keys
(tiny!)

Extremely fast

48

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

49

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

User enters passphrase

50

Optimally, we want to
map 32 bytes of
entropy into the 32-
byte Curve25519
private key

Not practically feasible.

51

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

Entropy Evaluation

52

We measure user
passphrase entropy
(using zxcvbn)

miniLock suggests “a
long, unique phrase that
makes sense only to you.”

Entropy Evaluation

53

Less than 100-bit
entropy pass phrases are
not allowed (miniLock
will refuse to open)

Instead, miniLock
constructs a suggested
passphrase

54

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

Entropy Evaluation

55

miniLock ships with
dictionary of 58,110
most used English
words

7-word passphrase =
581107 ~= 2111

56

100+ bits of entropy

57

Sufficient our purposes

We can also work on
making it harder to
map the keyspace

58

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

Scrypt

59

Provides “memory-hard”
key derivation.

First we derive a SHA-512
hash of the passphrase

Hash goes through 217
rounds

60

Key derivation

User enters
passphrase

Entropy
evaluation
(100+ bits)

Suggest
passphrase

Scrypt

Derive
Curve25519
key pair

Key derivation

61

scrypt(L) = 32 bytes →
Curve25519 private key

miniLock ID is Base64
encoding of public key

File encryption format

62

File is encrypted using a
random unique symmetric key

Symmetric key is encrypted
asymmetrically once for each
recipient and stored in header

Both are authenticated
encryption

63

File encryption format
Begin header

Sender ID

Recipient A: Header info

Recipient B: Header info

End header

Ciphertext

64

File encryption format
Begin header

Sender ID

Recipient A: Header info

Recipient B: Header info

End header

Ciphertext

65

File encryption format

A
!

File key
File nonce
File name

!
(Encrypted to
Recipient A’s
public key)

B
!

File key
File nonce
File name

!
(Encrypted to
Recipient B’s
public key)

66

Header recipients are
anonymized

?
!

File key
File nonce
File name

!
(Encrypted to
Recipient ?’s
public key)

?
!

File key
File nonce
File name

!
(Encrypted to
Recipient ?’s
public key)

Header recipients are
anonymized

67

Recipient attempts to
decrypt every section of
the header

If they obtain an
authenticated decryption,
they know they are an
intended recipient

General usage

68

Share your miniLock IDs
with friends

Encrypt any files using
friends’ miniLock IDs

Decrypt files sent to you

Drag and drop simplicity

69

Demonstration

70

miniLock is audited,
reviewed software:
ready for use

2-week test period
before “App Store”
release

Release schedule

71

Will be released as a
Chrome app

Runs on Chrome OS,
Windows, Mac, Linux

2-week test period before
“App Store” release

Release schedule

72

Get the code and
documentation today

http://minilock.io

Thank you!

http://minilock.io

