

Does it matter where in Beirut we put the incinerators?

Microflows and Microscale Heat Transfer Laboratory <u>ilakkis.wixsite.com/microflows</u> Irani-Oxi Engineering Complex, 311 Department of Mechanical Engineering Faculty of Engineering and Architecture American University of Beirut

issam lakkis samer salloum

CARS

The AUB Collaborative for the Study of Inhaled Atmospheric Aerosols

Outline

- Locations investigated
- What goes into the simulation
- Conditions of the two simulations
- Results
- Conclusions

Locations Investigated

Locations Investigated

- •TAPM is a software that predicts weather patterns and combines it with atmospheric chemical reactions to show pollutant transport.
- •TAPM solves the Navier Stokes (N-S) equations to output the wind velocity field over a selected period of time and in a selected region.
- •The wind velocity profile is then used as an input to solve the species transport equation in order to obtain the concentration profile for the pollutants.
- The model employs a nested grid:
 - •It starts solving the outer grid by getting the boundary and initial conditions by global synoptic analyses;
 - •It then passes larger scale information as boundary conditions to the next (finer) grid.

The Air Pollution Model

- •The N-S equations and the pollution transport equations are solved for three nested grids that go from 14, 4, and 1 km spacing to accurately represent the Beirut Area.
- Each grid is $30 \ge 30 \ge 20$
- •Gridded Global terrain height, vegetation and soil type, leaf area index and sea surface temperature are accounted for.
- •Six-hourly synoptic scale analyses for the year of 2014 are provided on a longitude/latitude grid from the Australian Bureau of Meteorology who have kindly allow us to use the data as initial and boundary conditions to start TAPM simulation.
- •The pollution source stack height is taken to be 50 m.

N-S grid 1 spacing = 14 km N-S grid 1 spacing = 4 km N-S grid 1 spacing = 1 km

pollution grid spacing = 200 m

Average pollutant distribution: z in [0, 10 m]

colors included down to 10% of local maximum (86%)

Average pollutant distribution: z in [10 m, 50 m]

colors included down to 10% of maximum (84%)

Average pollutant distribution: z in [50 m, 100 m]

colors included down to 10% of maximum (83%)

Average pollutant distribution: z in [100 m, 150 m]

colors included down to 10% of maximum (82%)

Average pollutant distribution: z in [0, 10 m]

colors included down to 10% of local maximum (64 %)

Average pollutant distribution: z in [10, 50 m]

colors included down to 10% of local maximum (63%)

Average pollutant distribution: z in [50, 100 m]

colors included down to 10% of local maximum (60%)

Average pollutant

distribution:

z in [100, 150 m]

colors included down to 10% of local maximum (57%)

•HurjBeirut Incinerator Pollution Transport (حرج بيروت) <u>https://youtu.be/QO2BczxdgTU</u>

•Dora Incinerator Pollution Transport (الدورة) https://youtu.be/lWfz7ZU0rHU

Acknowledgments

- University Research Board
- FEA Dean's office