cryptocoding
n..;a
‘_CARE-J fs}\
JP Aumasson

&

@veorq / http:/[aumasson.jp

academic background
principal cryptographer at Kudelski Security, .ch
applied crypto research and outreach

BLAKE, BLAKEZ2, SipHash, NORX
Crypto Coding Standard

Password Hashing Competition

Open Crypto Audit Project board member

buffer = OPENSSL_malloc(1 + 2 + payload + padding);

bp = buffer;

*bp++ = TLS1 HB RESPONSE;

s2n(payload, bp);

memcpy(bp, pl, payload);

r = ssI3_write bytes(s, TLS1 _RT_HEARTBEAT, buffer, \
3 + payload + padding);

i

bugs are bad
software crashes, incorrect output, etc.

crypto bugs are really bad

leak of private keys, secret documents,
past and future communications, etc.

threats to

individuals’ privacy, sometimes lives
organizations’ strategies, IP, etc.

0 P
e &/ || ssIKeyExchange.c

> opensource.apple.com/source/Security/Security-55471/libsecurity_ssl/lib/ssIKeyExchange.c

hashOut.data = hashes + SSL MD5 DIGEST LEN;
hashOut.length = SSL SHAl DIGEST LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)

goto :

if ((err ReadyHash(&SSLHashSHAl, &hashCtx)) != 0)
goto -

if ((err SSLHashSHAl.update(&hashCtx, &clientRandom))
goto s

if ((err SSLHashSHAl.update(&hashCtx, &serverRandom))

SLHashSHAl.update(&hashCtx, &signedParams))
ashSHAl.final (&hashCtx, &hashOut)) !=

err sslRawVerify(ctx,
ctx->peerPubKey,
dataToSign, /* plaintext */
dataToSignLen, /* plaintext length */
signature,
signaturelen);
if(err) {
sslErrorLog(
, (int)err);
goto fail

Heartbleed, gotofail;
“silly bugs” by “experts”

not pure "crypto bugs”, but
bugs in the crypto

missing bound check
unconditional goto

"But we have static analyzers!”

¢

not detected
(in part due to OpenSSL's complexity)

s

goto fail;
goto fail;

detected

(like plenty of other unreachable code)

crypto bugs (and bugs in crypto)
vs "standard"” security bugs:

less understood
fewer experts
fewer tools

everybody uses OpenSSL, Apple
sometimes, some read the code

many more bugs in code that noone reads

Agenda

1. the poster child: OpenSSL
2. secure crypto coding guidelines

3. conclusion

"OpenSSL s****"?

M S aCRSets P e

'GH

appen?

AlM I

What's the worst th

ASN.1 parsing, CA/CRL management

crypto: RSA, DSA, DH*, ECDH*; AES,
CAMELLIA, CAST, DES, IDEA, RC2, RCA4,
RCS5; MD2, MD5, RIPEMD160, SHA*; SRP,

CCM, GCM, HMAC, GOST*, PKCS*,

PRNG, password hashing, S/MIME
X.509 certificate management, timestamping

some crypto accelerators, hardware tokens

clients and servers for SSL2, SSL3, TLS1.0,
TLS1.1, TLS1.2, DTLS1.0, DTLS1.2

SNI, session tickets, etc. etc.

*nix
BeOS
DION
HP-UX
Mac OS Classic
NetWare
OpenVMS
ULTRIX
VxWorks
Win* (including 16-bit, CE)

OpenSSL is the space shuttle of crypto
libraries. It will get you to space, provided you
have a team of people to push the ten
thousand buttons required to do so.

— Matthew Green

| promise nothing complete; because any
human thing supposed to be complete, must
not for that very reason infallibly be faulty.

— Herman Melville, in Moby Dick

OpenSSL code

buffer = OPENSSL_malloc(1 + 2 + + padding);
bp = buffer;
*pp++ = TLS1 HB RESPONSE;

, bp);

memcpy(bp, pl,)
r = ssI3_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, \

3+ + padding);

is not the payload but its length (pl is the payload)

courtesy of @OpenSSLFact (Matt Green)

/* BIG UGLY WARNING! This is so damn

ugly | wanna puke ... ARGH! ARGH! ARGH!
Let's get rid of this macro package. Please?

[* HAS BUGS! DON'T USE - this is only
present for use in des.c */
void DES 3cbc_encrypt(...)

"user pwd = NULL; /* abandon responsability

[* FIXME: the cast of the function seems
unlikely to be a good idea */
(void)BIO_set_info_callback(dbio,
(bio_info_cb *)data->info_callback)

C fi (O https://www.openssl.org

1. Is OpenSSL thread-safe?

Yes (with limitations: an SSL connection may not concurrently be used by
and many Unix systems, OpenSSL automatically uses the multi-threaded v
your platform is not one of these, consult the INSTALL file.

in the RNG:

state[st_idx++]*=local md[i];

(crypto/rand/md_rand.c)

RFC 5246: TLS 1.2

1.

2.

3.

Generate a string R of 46 random bytes <<::;:::] (1)
Decrypt the message to recover the plaintext M <::j:::] (2)

If the PKCS#1 padding is not correct, or the length of message
M is not exactly 48 bytes:

pre_master secret = ClientHello.client version || R
else If ClientHello.client version <= TLS 1.0, and version

number check is explicitly disabled:

pre_master_secret = M <:I (3)
else:

pre_master secret = ClientHello.client version || M[2..47]

OpenSSL 1.0.1c

i=RSA_private_decrypt((int)n,p,p,rsa,RSA_PKCS1_PADDING); <::;::] (2)

if (al != -1)
{
/* Some decryption failure —- use random value instead as countermeasure
* against Bleichenbacher's attack on PKCS #1 v1.5 RSA padding
* (see RFC 2246, section 7.4.7.1). %/
ERR_clear_error();
i = SSL_MAX_MASTER_KEY_LENGTH;
pl[0] = s—>client_version >> 8;
pl[1] = s—>client_version & 0xff;
if (RAND_pseudo_bytes(p+2, i-2) <= 0) <:I (1)
/* should be RAND_bytes, but we cannot work around a failure x/
goto err;
}

s—>session—->master_key_length=
s—>method->ss13_enc->generate_master_secret(s, <::J (3)
s—>session—>master_key,
p,i);

I TOLD YOU SO!

I have been getting a ton of requests to make more comments so here goes. I told you so, la la la, I told
you so!

Joking aside, this is the worst security bug I have ever dealt with. Who knew that running crypto was
worse than not running it at all? This is NOT the last catastrophic bug lurking in this code. Buyer
beware, this will happen again. I was in NYC when the Internet went into full meltdown and could not
respond earlier. Once things calm down I might do another round of pointing out amazing things I ran
across in OpenSSL. There is no end to the amount of awe when reading through that code. For now,
enjoy the old rant that is going around the tubes, again.

OpenSSL is written by monkeys

https://www.peereboom.us/assl/assl/html/openssl.html

https://www.peereboom.us/assl/assl/html/openssl.html
https://www.peereboom.us/assl/assl/html/openssl.html

ranting about OpenSSL is easy
we should not blame the devs

let's try to understand..

So, Why did "We" the community let OpenSSL happen..
Nobody Looked.

Or nobody admitted they looked.

v

I0OANNASOMIEZRURGER QON

J0M & £ o=

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.htmi
(slide credit: Bob Beck, OpenBSD project)

http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html
http://www.openbsd.org/papers/bsdcan14-libressl/mgp00004.html

OpenSSL prioritizes
speed
portability
functionalities

at the price of "best efforts” and "dirty tricks"...

[* OCSP server: read in and parse input
request */

[* way to discard any device and
directory

/[* kind of for Sun Studio */

#ifdef STD_ERROR_HANDLE /* | */

[* : read in the ASN1 data into a STACK OF

(ASN1_TYPE):

of lesser priority
usability
security
consistency
robustness

Who should design cryptographic libraries

In order to create a proper SSL/TLS implementation you need to be a master of:

Cryptographic algorithms.
Cryptographic practice.
Software engineering.
Software optimization.

The language(s) used.
Domain specific knowledge.

http://insanecoding.blogspot.qr/2014/04/libressl-good-and-bad.html

http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html
http://insanecoding.blogspot.gr/2014/04/libressl-good-and-bad.html

crypto by "real programmers" often
yields cleaner code, but dubious
choices of primitives and/or broken
implementations (cf. messaging apps)

it's probably unrealistic to build a better
secure/fast/usable/consistent/certified
toolkit+lib in reasonable time

what are the alternatives?

Really better? (maybe TLS itself is the problem?)

Open
Developed by $ - s
source

Implementation $ Software license Copyright owner

Botan
cryptlib
CyaSS
GnuTLS

oo

MatrixSS

PolarSS

SChannel

Secure Transport

SharkSSL

JSSE

Bouncy Castle

LibreSS

Jack Lloyd
Peter Gutmann
wolfSSL
GnuTLS project

PeerSec Networks

OpenSSL project

Offspark
Microsoft

Apple Inc.
Realtimelogic LLC*]
Oracle

The Legion of the Bouncy
Castle Inc.

OpenBSD

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Simplified BSD License

Sleepycat License and
commercial license

GPLv2 and commercial license

LGPL

GPLv2 and commercial license

Mozilla Public License

OpenSSL / SSLeay dual-license

GPLv2 and commercial license

Proprietary

APSL 2.0

Proprietary

GPLv2 and commercial license

MIT License

OpenSSL / SSLeay dual-license

Jack Lloyd
Peter Gutmann
wolfSSL Inc.

o

Free Software Foundation
PeerSec Networks
NSS contributors

Eric Young, Tim Hudson, Sun, OpenSSL
project, and others

Brainspark B.V. (brainspark.nl)

Microsoft Inc.

Apple Inc.

Realtimelogic LLC

Oracle

Legion of the Bouncy Castle Inc.

Eric Young, Tim Hudson, Sun, OpenSSL
project, and others

http://en.wikipedia.org/wiki/Comparison_of TLS_ implementations

http://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

let's just use closed-source code!

How Does Heartbleed Alter the 'Open
Source Is Safer' Discussion?

Soulskill

jammag writes:

"Heartbleed has dealt a blow to the image of free and open source software. In the
self-mythology of FOSS, bugs like Heartbleed aren't supposed to happen when
the source code is freely available and being worked with daily. As Eric Raymond
famously said, 'given enough eyeballs, all bugs are shallow." Many users of
proprietary software, tired of FOSS's continual claims of superior security,
welcome the idea that Heartbleed has punctured FOSS's pretensions. But is that

what has happened?"

It's not just OpenSSL, it's not an open-
source thing.
— Bob Beck

open- vs. closed-source software security:

e well-known debate
e no definite answer, depends on lots of
factors; see summary on

http://en.wikipedia.org/wiki/Open-source software security

for crypto, OSS has a better track record

e better assurance against "backdoors”
e flaws in closed-source can often be found
In a "black-box" manner

http://en.wikipedia.org/wiki/Open-source_software_security
http://en.wikipedia.org/wiki/Open-source_software_security

LibreSSL

LibreSSL is a FREE version of the SSL/TLS protocol forked from OpenSSL

At the moment we are too busy deleting and rewriting code to make a decent web
page. No we don't want help making web pages, thank you.

http://www.libressl.org/

initiative of the OpenBSD community
big progress in little time (lot of code deleted)

adoption unclear if it remains BSD-centric
ports expected, but won't leverage BSD security features

OpenSSL patches unlikely to directly apply

http://www.libressl.org/
http://www.libressl.org/

how to write secure crypto code?

write secure code!

The Power of Ten
10 Rules for Writing Safety Critical Code

Restrict to simple control flow constructs.

Give all loops a fixed upper-bound.

Do not use dynamic memory allocation after initialization.

Limit functions to no more than 60 lines of text.

Use minimally two assertions per function on average.

Declare data objects at the smallest possible level of scope.

Check the return value of non-void functions, and check the validity of function parameters.
Limit the use of the preprocessor to file inclusion and simple macros.

1
2
3
4
)
6
7
8
9

Limit the use of pointers. Use no more than two levels of dereferencing per expression.

=
o

Compile with all warnings enabled, and use one or more source code analyzers.

Based on: "The Power of Ten -- Rules for Developing Safety Ciritical Code," IEEE Computer, June 2006, pp. 93-95 (PDF).

http://spinroot.com/p10/

http://spinroot.com/p10/
http://spinroot.com/p10/

A N ———
Secure . Tue CERT C
C d . Secure Coding C
L]
oding oo arire | (Or e . ODING
Principles & Practices SeEconDp EpiTioN TANI)A]&I)
98 Rules for Developing Safe,
Reliable, and Secure Systems
¢ , , SECOND EDITION
x\\ f \:
A, Q‘.‘- 3 s\
l'ﬁ Bk
Robert C. Seacord
Sezexers by thera D Reie ROBERT C. SEACORD

etc.

write secure crypto!

defend against algorithmic attacks,
timing attacks, "misuse" attacks, etfc.

the best list | found: in NaCl [salf]

Branches

Do not use secret data to control a branch. In particular, do not use the memcmp function to compare secrets. Instead use
crypto_verify_16, crypto_verify_32, etc., which perform constant-time string comparisons.

Even on architectures that support fast constant-time conditional-move instructions, always assume that a comparison in C is compiled into a
branch, not a conditional move. Compilers can be remarkably stupid.

Array lookups

Do not use secret data as an array index.

Early plans for NaCl would have allowed exceptions to this rule inside primitives specifically labelled vulnerable, in particular to allow
fast crypto_stream_aesl128vulnerable, but subsequent research showed that this compromise was unnecessary.

Dynamic memory allocation

Do not use heap allocators (malloc, calloc, sbrk, etc.) or variable-size stack allocators (alloca, int x[n], etc.) in C NaCl.

http://nacl.cr.yp.to/internals.html

http://nacl.cr.yp.to/internals.html
http://nacl.cr.yp.to/internals.html

so we tried to help

& Jpa Talk Preferences Watchlist Contribu

Page Discussion Read Edit View history ¥ G

Cryptography Coding Standard

Welcome to the Cryptography Coding Standard homepage.

The Cryptography Coding Standard (CCS) is a set of coding rules to prevent the most commc
weaknesses in software cryptographic implementations. CCS was first presented and discuss

Main page Internet crypto & workshop on Jan 23, 2013 (our slides [are available).
Coding rules

Navigation

The following pages are available:

References

FAQ » Coding rules: the list of coding rules, with for each rule a statement of the problem address
or more proposed solutions

Toolbox » References: a list of external references

¢ FAQ: the usual Q&As page
What links here

Related changes

https://cryptocoding.net

These pages can also be accessed with the navigation bar on the left.

with help from Tanja Lange, Nick Mathewson,
Samuel Neves, Diego F. Aranha, etc.

https://cryptocoding.net
https://cryptocoding.net

we tried to make the rules simple,
in a do-vs.-don’t style

secrets should be kept secret

do not leak information on the secrets
(timing, memory accesses, etc.)

compare strings in constant time

Microsoft C runtime library memcmp implementation:

EXTERN_C int __ cdecl memcmp(const void *Ptr1, const void *Ptr2, size t
Count) {

INT v = 0:
BYTE *p1 = (BYTE *)Ptr1:
BYTE *p2 = (BYTE *)Ptr2:

W
while(Count-- > 0 && v == 0) { waranh®

}

return v;

compare strings in constant time

Constant-time comparison function

int util_cmp_const(const void * a, const void *b, const size t size) {
const unsigned char *_a = (const unsigned char *) a;
const unsigned char *_b = (const unsigned char *) b;
unsigned char result = 0;
size ti;

for (i = 0; i < size; i++)
result |= _a[i]* _bli;

avoid other potential timing leaks

make

e branchings

e |oop bounds

e table lookups

e memory allocations

(private key, password, heartbeat payload, etc.)

prevent compiler interference with
security-critical operations

Tor vs MS Visual C++ 2010 optimizations

int
crypto_pk_private_sign_digest(...)

{
char digest[DIGEST _LEN];

return r;

}

a solution: C11's memset_s()

clean memory of secret data

(keys, round keys, internal states, etc.)

Data in stack or heap may leak through crash
dumps, memory reuse, hibernate files, etc.

Windows’
OpenSSL’s

void burn(void *v, size tn)

{

volatile unsigned char *p = (volatile unsigned char *)v;
while(n--)

}

last but not least

-
-
-

kY

=3

RANDOMNESS

You never saw it coming.

Randomness everywhere

key generation and key agreement
symmetric encryption (CBC, etc.)
RSA OAEP, El Gamal, (EC)DSA
side-channel defenses
etc. etc.

Netscape, 1996: ~ 47-bit security thanks to

RNG_GenerateRandomBytes() {
return (..)

Mediawiki, 2012: 32-bit Mersenne Twister seed

‘‘‘‘‘ randomPassword
$. - !
SL = SF
Spw = » S
S} - :S
S) =
for ($1 = S1 < $ Si++
$np .= $i == 2 : Spw S

*nix:
example: get a random 32-bit integer

int randint, bytes_read;

int fd = open(" ", O_RDONLY);
if (fd1=-1){
bytes read = (fd, &randint, sizeof(randint));

if (bytes_read != sizeof(randint)) return -1;

}

else { return -2; }
printf("%08x\n", randint);
close(fd);

return O;

(ideally, there should be a syscall for this)

“but /dev/random is betftter! it blocks!”

may do more harm than good
to your application, since

e blockings may be mishandled
e /dev/urandom is safe on reasonable OS’

Win*:

int randombytes(unsigned char *out, size t outlen) {
static HCRYPTPROV handle = 0;

if('handle) {
if(! (&handle, 0, 0, PROV_RSA FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT))
return -1;
}

while(outlen > 0) {
const DWORD len = outlen > 1048576UL ? 1048576UL : outlen;
if(! (handle, len, out)) { return -2; }
out += len;
outlen -=len;

}

return O;

}

it's possible to fail in many ways, and
appear to succeed in many ways

non-uniform sampling
no forward secrecy
randomness reuse
poor testing
etc.

Thou shalt:

NOo abkowb-=

© ®

10.
11.
12.

compare secret strings in constant time

avoid branchings controlled by secret data

avoid table look-ups indexed by secret data

avoid secret-dependent loop bounds

prevent compiler interference with security-critical
operations

prevent confusion between secure and insecure APIs

. avoid mixing security and abstraction levels of

cryptographic primitives in the same API layer

use unsigned bytes to represent binary data

use separate types for secret and non-secret
information

use separate types for different types of information
clean memory of secret data

use strong randomness

Learn the rules like a pro, so you can
break them like an artist.

— Pablo Picasso

conclusion

let’'s stop the blame game

(OpenSSL, “developers”, “academics’, etc.)

cryptographers (and scientists, etc.)

e acknowledge that you
e cither go the extra mile and learn, or
e get help from a real programmer

programmers

e acknowledge that you
e cither go the extra mile and learn, or
e get help from a real cryptographer

in any case: get third-party reviews/audits!

i o s
- L ey
Y a-t-il des guestions 2"

