
BSD Multiplicity: An applied survey of
BSD multiplicity and virtualization strategies

from chroot to BHyVe

Michael Dexter
BSD.lv Project – Call For Testing

EuroBSDCon 2011

Related Materials

Presentation and How-To's: multiplicity.bsd.lv

sendbug: editor@callfortesting.org

Updates and Corrections Welcome

BSD Multiplicity: Context

The non-conflicting plurality of conventionally-singular
configured execution environments...

...each the context that each layer of the Unix model
provides to the layer above it

Specifically within Berkeley Unix systems
and BSD-licensed utilities

BSD Multiplicity: Context

Conventional Unix Layers

Instruction Set Architecture – Application Binary Interface
Application Programming Interfaces – “Request For Comments”

TCP/IP-based network protocols

BSD Multiplicity: Context

Pluralized Unix Layers

BSD Multiplicity: Context

A Sea of Choices

VMWare, Linux KVM, chroot, FreeBSD jail,
Solaris Zones, VirtualBox, sysjail, EC2, Xen,

Dragonfly BSD vkernel, Parallels, Linux Vserver,
UserModeLinux, SIMH, Microsoft Hyper-V,
QEMU, Virtuoso, GXemul, Linux OpenVZ,

Virtual PC, Sun xVM and of course...

BSD Multiplicity: Context

Cloud Computing

Image courtesy of the US Army

BSD Multiplicity: Context

My Motivations

1991 – Desire for my own box

1998 – 'rpm -ivh *.rpm'

(Oops! Re-install the OS)

BSD Multiplicity: Context

The solution in the broadest sense:

The separation, compartmentalization,
containment, imprisonment or isolation of

filesystems, applications and/or users.

BSD Multiplicity: Context

Additional Motivations

Cross-platform development
and system administration

The consolidation of systems,
even if dissimilar

BSD Multiplicity: Context

Long-term Motivation

1991: Hundreds of simultaneous users on a
33MHz Sun 4/490 (my first dexter@)

Future: A private instance for
thousands of users on
commodity hardware

BSD Multiplicity: Considerations

Administrative:

Storage Devices
Network Devices
Console Devices

Kernels
Userland

BSD Multiplicity: Considerations

Administrative: Storage Devices

dd if=/dev/zero of=1GB.img
bs=1024 count=1000000

BSD Multiplicity: Considerations

Administrative: Network Devices

Is a network address provided from
within or outside a system?

To what real or virtual hardware device?

BSD Multiplicity: Considerations

Administrative: Guest Console

Host Console? Xwindow?
SSH? Serial Port? VNC?

BSD Multiplicity: Considerations

Administrative: Kernels

Is the kernel provided from
within or outside a system?

Is it stock? Modified?

BSD Multiplicity: Considerations

Administrative: Userland

Is it stock? Reduced? Crunched?

make.conf SKIPDIR site.tgz...

TinyBSD – NanoBSD – miniBSD

BSD Multiplicity: Survey Criteria

A rigorous analysis of theory, taxonomy,
security and performance are beyond

the scope of this survey

Many papers address these but
“Virtualization” and now “Cloud” have been

hijacked by marketing departments to
represent just about anything

BSD Multiplicity: Survey Criteria

Goal of this presentation:
Inspire your experimentation with these

strategies by conveying their relative
strengths and weaknesses and

establishing expectations relating to their
configuration, administration and use

MACHINE – KERNEL – INSTANCE – HOST

Hardware Multiplicity

Easy: Buy more machines

Excellent isolation

Disadvantage: High cost

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

The blade server: “a stripped down server
computer with a optimized to minimize the

use of physical space and energy.”

K&R and the CSRG did not have this option
Quotation courtesy of Wikipedia

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:
Xen: (GPL licensed kernel) with very good

NetBSD host support

Good effort at a Popek and Goldberg
Virtual Machine Monitor

Formal Requirements for Virtualizable

Third Generation Architectures - 1974

MACHINE – KERNEL – INSTANCE – HOST

Xen shortcomings:

x86 MMU has performance issues

Fidelity issues: Highest performance
requires a modified guest OS

(Paravirtualized mode)

MACHINE – KERNEL – INSTANCE – HOST

Example configuration
kernel = "/root/netbsd-5.1-XEN3_DOMU.gz"

#kernel = "/root/netbsd-5.1-INSTALL_XEN3_DOMU.gz"

Memory = 64

name = 'NetBSD'

vif = ['mac=00:16:3e:00:00:11, bridge=bridge0']

disk = ['file:/root/netbsd.img,0x1,w' , \

'phy:/dev/cd0a,ioemu:hdc:cdrom,r']

root = "xbd0"

MACHINE – KERNEL – INSTANCE – HOST

Detailed NetBSD Xen instructions are at

multiplicity.bsd.lv

Nice! Disk images from privileged instances
can be shared with QEMU

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

FreeBSD and NetBSD on Amazon EC2

www.daemonology.net/freebsd-on-ec2/
wiki.netbsd.org/amazon_ec2/

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

Software Virtual Machines
(Emulators)

SIMH, GXemul

MACHINE – KERNEL – INSTANCE – HOST

SIMH Vax
load -r /usr/pkg/share/simh/ka655.bin

set cpu 64m

at nvr openbsd.nvram

deposit rq qtime 1000000

set rq0 ra92

at rq0 vax.img

set rq1 cdrom

at rq1 install43vax.iso

set rq2 cdrom

at rq2 floppy43.fs ...

MACHINE – KERNEL – INSTANCE – HOST

at xq0 vr0

boot cpu

exit

>>>boot dua2:

Retro – Interactive – Finicky – Slow
Requirements vary by machine

Wide range of machines incl. PDP-11

MACHINE – KERNEL – INSTANCE – HOST

GXemul - DECstation 5000/200

startx

gxemul -e 3max -d nbsd_pmax.img -d \

b:pmaxcd-4.0.iso -M 64

gxemul -X -Y 2 -e 3max -d pmax.img \

-d b:pmaxcd-4.0.iso

Familiar syntax – Slow
ARM – MIPS – PowerPC – SuperH

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

QEMU/kQEMU (GPL-licensed)
startx

qemu -hda i386.img -cdrom install49.iso \

-boot -d -m 64

qemu -hda i386.img -boot c -m 64

Flexible – Proven

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

qemu-img utility

qemu-img info -f raw guest.vmdk

qemu-img convert guest.vmdk -O raw guest.img

BSD Licensed!

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:

VirtualBox (GPL-licensed)

Now owned by Oracle

Fast – Flexible – Professional

MACHINE – KERNEL – INSTANCE – HOST

BHyVe BSD Hypervisor

“Your work with BHyVe is the first
independent validation of our code base.”

– Neel Natu

MACHINE – KERNEL – INSTANCE – HOST

BHyVe BSD Hypervisor
A type-2 “Hosted” Hypervisor for FreeBSD

that is under active development with the
goal of hard logical partitioning

Supports PCI pass-through for storage and
network devices

See also BSDCan 2011 BHyVe Presentation

MACHINE – KERNEL – INSTANCE – HOST

BHyVe BSD Hypervisor

Requirements:
VMX (VT-x) and EPT (Nested Page Tables)

vmm.ko kernel module on the host
A modified guest at this time

MACHINE – KERNEL – INSTANCE – HOST

BHyVe Host Configuration

pkg_add -r subversion-freebsd binutils

svn co http://svn.freebsd.org/base/projects/
bhyve /usr/src/

(Make and build GENERIC kernel and world on host)

make -DNO_MODULES KERNCONF=BHYVE buildkernel

(For the guest kernel)

/boot/loader.conf

hw.physmem="0x100000000" (Limit host's RAM to 4GB)

MACHINE – KERNEL – INSTANCE – HOST

BHyVe Execution

kldload vmm
kldload if_tap
ifconfig tap0 create
kldload bridgestp
kldload if_bridge
ifconfig bridge0 create
ifconfig bridge0 addm em0
ifconfig bridge0 addm tap0
ifconfig bridge0 up
ifconfig tap0 up

cd /usr/share/vm1 (Preconfigured guest with a disk image)
sh vmrun.sh vm1

MACHINE – KERNEL – INSTANCE – HOST

Launching virtual machine "vm1" with 768MB memory
below 4GB and 2048MB memory above 4GB …
Consoles: userboot

FreeBSD/amd64 User boot, Revision
1.1(neel@freebsd.org, Sun Sep 25 22:19:14 PDT
2011)Loading /boot/defaults/loader.conf /boot//
kernel/kernel text=0x41e94f
data=0x57ac0+0x273590
syms=[0x8+0x737b8+0x8+0x6abe3]/boot//kernel/
virtio.ko size 0x4ad8 at 0xbc8000/boot//kernel/
if_vtnet.ko size 0xac80 at 0xbcd000/boot//
kernel/virtio_pci.ko size 0x56c0 at 0xbd8000/
boot//kernel/virtio_blk.ko size 0x4f60 at
0xbde000

(Enters boot screen)

MACHINE – KERNEL – INSTANCE – HOST

BHyVe Guest Image Preparation
mkdir /usr/share/vm1
mkdir /usr/share/vm1/boot
mkdir /usr/share/vm1/boot/kernel

cd /usr/share/vm1
cp ${OBJDIR}/sys/boot/userboot/userboot/
userboot.so .

create the 32MB virtio backing disk device
dd if=/dev/zero of=diskdev count=32768 bs=1024

cd /usr/share/vm1/boot
cp /boot/*.4th boot
cp -a /boot/defaults .
cp /boot/loader.help .
cp /boot/loader.rc .
cp /boot/menu.rc .

MACHINE – KERNEL – INSTANCE – HOST

Guest loader.conf
kernel="/kernel"

virtio_load="YES"
if_vtnet_load="YES"
virtio_pci_load="YES"
virtio_blk_load="YES"

kern.hz="100"
hw.pci.enable_msix="0"
hw.pci.honor_msi_blacklist="0"bootverbose="1"

mfsroot_load="YES"
mfsroot_type="mfs_root"
mfsroot_name="mdroot"

(Finally copy in built guest kernel and modules)

MACHINE – KERNEL – INSTANCE – HOST

BHyVe TO DO
• Support other operating systems such as Linux and Windows

• Emulation of legacy devices (UART, VGA, IDE) and possibly
BIOS INT call emulation (Works around the BIOS emulation
requirement for FreeBSD by modifying the loader to run on top
of the hypervisor but may not have the same luxury for other
OS's.)

• IOAPIC emulation and instruction emulation.

• Need AMD/SVM support in BHyVe (work in progress).

• Better integration with the host's scheduler, virtual memory
system and to possibly allow the host to be more aware of virtual
CPU threads.

MACHINE – KERNEL – INSTANCE – HOST

BHyVe TO DO
• Implement memory over-commit. “The KVM hypervisor supports

overcommitting CPUs and memory. Overcommitting is the
process of allocating more virtualized CPUs or memory than
there are physical resources on the system. CPU overcommit
allows under-utilized virtualized servers or desktops to run on
fewer servers which saves power and money.”

Currently, memory has to be stolen from FreeBSD at boot-time. It
would be useful to a) grab free pages from the system to build
the guest's address space, and b) somehow hook this into the
user-space bhyve process to allow overcommit. Important to
FreeBSD for hosting virtual machines.

Quotation courtesy of Wikipedia

MACHINE – KERNEL – INSTANCE – HOST

BHyVe TO DO

• The same goes for CPU resource allocation: CPU. BHyVe will
use 100% of a CPU even when the guest is idle. Great for hard
logical partitioning but not for running a bunch of VM's.

• There are also packaging aspects of it that we have not yet
explored (such as an embedded hypervisor packaged with VM
creation and management tools).

Current work is on high-performance paravirtualized I/O.

MACHINE – KERNEL – INSTANCE – HOST

BHyVe TO DO

• Suspend/resume/pause support. Requires adjusting the TSC
value that the guest sees rather than have it free-run. Not sure
how to resume on a machine that has a different frequency,
though it may not be too hard.

• Hiding CPUID features. It's currently pass-through (once again,
great for hard partitioning where you want full use of the
underlying hardware), but for migration, features need to be
hidden since they may not exist on the machines the VM is
being moved to.

• Probably much more. The most important thing is to get people
interested and working on it to fill the gaps: way too many for
just a few people.

MACHINE – KERNEL – INSTANCE – HOST

BHyVe TO DO

• Boot loader improvements: the boot-loader runs as a separate
process in user-space. For legacy OS's, it might be worthwhile
to pull in some of the old BSD dosrun BIOS emulation and allow
a sector-0 boot. This would require either 16-bit software
emulation for the early part of the boot or AMD/SandyBridge
'unrestricted guest' support.

• The virtio block code uses raw disk images. It would be useful to
have a sparse filesystem representation such as Qemu COW2
or Vmware VMDK support.

• The virtio net code can only interface to a tap device backend.
This should be configurable as can be done with QEMU.

MACHINE – KERNEL – INSTANCE – HOST

BHyVe Status
“As far as the bigger picture is concerned, we would like people to

start hacking on it. The code is pretty simple and we'll be more
than happy to help anybody get going.”

– Neel Natu

“Running the modified “BHYVE” kernel config on a FreeBSD host
works very well. I did notice that SMP with a 9.0 guest is

currently broken beyond 2 vCPUs with a TSC sync issue (that
doesn't exist in 8.1; 8 vCPUs works there), but other than that it

should be fine.”

– Peter Grehan

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:
DragonflyBSD vkernel(7)

./boot/kernel -m 64m -r \
root.img -I auto:bridge0

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:
NetBSD/usermode

“What I've done is created a port of NetBSD
which runs as a userspace application and

has full access to libc.”
– Jared D. McNeill

MACHINE – KERNEL – INSTANCE – HOST

BSD Breeding Ground

chroot, FreeBSD/PC-BSD jail
DragonFly Jail, sysjail, kauth Jail,

mult process jailing

MACHINE – KERNEL – INSTANCE – HOST

chroot(8)

Committed by Bill Joy on March 18th 1982
17 months before 4.2BSD

Proved useful for building the system

MACHINE – KERNEL – INSTANCE – HOST

chroot(8)

"The chroot system call was first added to provide an
alternate build environment for the system. It was later
adapted to isolate anonymous ftp access to the system.

The original intent of chroot was not to ensure security. Even
when used to provide security for anonymous ftp, the set of
operations allowed by ftp was carefully controlled to
prevent those that allowed escape from the chrooted'ed
environment."

– McKusick, Neville-Neil
(The Design and Implementation of the FreeBSD Operating System)

MACHINE – KERNEL – INSTANCE – HOST

So began nearly 30 years of wack-a-mole...

MACHINE – KERNEL – INSTANCE – HOST

“Change root” modifies the vnode of a given
directory from the perspective of a

provided command. Any library
dependencies of that command must be

satisfied within the directory as the
command will not see outside of it. Such

dependencies can be determined with the
ldd command.

MACHINE – KERNEL – INSTANCE – HOST

...not to mention functional isolation. One or
more restrictions are applied to create a
restrictive context where none existed.
Privacy concern: the one-way mirror

The chrooted binary can't see out but
everyone else can see in.

Alas, some moles can break out of jail.

MACHINE – KERNEL – INSTANCE – HOST

Filesystems, not disks.

Though a mounted disk image could
be used for a chrooted directory

Used daily by millions of chrooted daemons
and institutionalized in OpenBSD

MACHINE – KERNEL – INSTANCE – HOST

root@test.bsd.lv:/root$ ldd `which sh`

/bin/sh:

 -ltermcap.0 => /lib/libtermcap.so.0

 -ledit.2 => /lib/libedit.so.2

 -lc.12 => /lib/libc.so.12

Our first userland concerns...

MACHINE – KERNEL – INSTANCE – HOST

FreeBSD/PC-BSD/DragonFly BSD Jail

Super chroot

Adds networking, processes, users,
a root user

MACHINE – KERNEL – INSTANCE – HOST

If your user account feels inadequate,
this is what you really want.

jail /usr/jail/ myjail 192.168.1.10 \

/bin/sh /etc/rc

A directory – A hostname – An IP – rc! - sshd!

(jail brought me back to BSD in 2002)

MACHINE – KERNEL – INSTANCE – HOST

Essentially a “real” host with as many
filesystem, disk image, network and

userland knobs you can turn.

MACHINE – KERNEL – INSTANCE – HOST

The official jail management mechanisms
introduced in FreeBSD 5.0 (not available in
DragonFly BSD). PC-BSD introduced the

Warden jail management tool.
A script that loosely follows adduser

syntax, uses disk images and creates rc
scripts can be found at multiplicity.bsd.lv

MACHINE – KERNEL – INSTANCE – HOST

Honorable mention:
sysjail

As the systrace device offers the process
interception that characterizes functional
isolation, a faithful jail clone could be
build atop it for use with OpenBSD and

NetBSD.

MACHINE – KERNEL – INSTANCE – HOST

sysjail has been theoretically and
perhaps practically undermined for security
purposes by systrace vulnerabilities yet

remains useful for trusted isolation.

See Robert Watson's “woot” talk on systrace
vulnerabilities for more information.

MACHINE – KERNEL – INSTANCE – HOST

Honorable mentions:

A kauth-based Jail for NetBSD
Process jailing for OpenBSD

Debian/kFreeBSD jail
compat_linux may support Linux rc in jail

MACHINE – KERNEL – INSTANCE – HOST

What would instance multiplicity look like?

A single kernel could support multiple init
processes booted from separate storage

devices, provided that context was given to
conventionally-global constructs such as

the process table and user table.

MACHINE – KERNEL – INSTANCE – HOST

What would instance multiplicity look like?

Entire instances from the init process on
down need only be placed in a structure

not unlike that of a jail, provided the
appropriation of said global constructs,

plus some form of management
mechanism for the resulting federated

instances.

MACHINE – KERNEL – INSTANCE – HOST

The mult project explores this approach
using NetBSD 3.1

The result is logical, rather than
functional isolation

MACHINE – KERNEL – INSTANCE – HOST

Originally intended for grid computing but is
applicable to public, private and
anonymous “cloud” computing.

mult.bsd.lv

MACHINE – KERNEL – INSTANCE – HOST

Very Honorable Mention:

Network Stack Virtualization

wiki.freebsd.org/Image/VNETSamples
www.openbsd.org/papers/f2k9-vrf/

MACHINE – KERNEL – INSTANCE – HOST

Review: machine multiplicity

MACHINE – KERNEL – INSTANCE – HOST

Review: kernel multiplicity

MACHINE – KERNEL – INSTANCE – HOST

Review: host multiplicity

MACHINE – KERNEL – INSTANCE – HOST

Review: instance multiplicity

MACHINE – KERNEL – INSTANCE – HOST

Review: instance multiplicity

MACHINE – KERNEL – INSTANCE – HOST

Thank you!

Please explore these!

Thank you EuroBSDCon organizers!

