
Reference Number: 329176-001, Revision: 1.0

MCA Enhancements in Future
Intel® Xeon® Processors
June 2013

2 Reference Number: 329176-001, Revision: 1.0

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS,
OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH
ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS
NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The
information here is subject to change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.
Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT
Technology-enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software
used. For more information including details on which processors support HT Technology, visit
http://www.intel.com/info/hyperthreading.
Intel® Turbo Boost Technology requires a system with Intel® Turbo Boost Technology. Intel Turbo Boost Technology and Intel Turbo
Boost Technology 2.0 are only available on select Intel® processors. Consult your system manufacturer. Performance varies
depending on hardware, software, and system configuration. For more information, visit http://www.intel.com/go/turbo
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm
Intel, the Intel logo and Xeon trademarks of Intel Corporation in the U.S. and/or other countries.
Copyright © 2013 Intel Corporation. All right reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/info/hyperthreading
http://www.intel.com/go/turbo
http://www.intel.com/design/literature.htm

Reference Number: 329176-001, Revision: 1.0 3

Contents

1 MCA Enhancements in Future Intel® Xeon® Processors ..5
1.1 Introduction ...5

1.1.1 References ..5
1.1.2 Definition of Terms ...5

1.2 Enhanced MCA Logging ..5
1.2.1 Usage Model..6

1.2.1.1 Enhanced MCA Logging and Memory PFA6
1.2.2 Discovering support for Enhanced MCA Log..7

1.2.2.1 Discovering Processor Capability ...7
1.2.2.2 Discovering Platform Capability...7

1.2.3 Memory Data Structures ...9
1.2.3.1 Enhanced MCA Level 1 Directory ... 10
1.2.3.2 Error Log Directory ... 11

1.2.4 Software Flows .. 12
1.2.4.1 Enhanced MCA Log Initialization.. 13
1.2.4.2 Runtime Flow ... 13

1.3 IO MCA.. 14

Figures

1-1 Enhanced MCA Error Log Data Structures ... 10
1-2 Combined Flow ... 13

Tables

1-1 Definitions..5
1-2 Likely Actions by Memory PFA Agent ..6
1-3 Enhanced MCA Log Discovery..7
1-4 Enhanced MCA Logging Capability ...7
1-5 Enhanced MCA Logging DSM...8
1-6 Enhanced MCA L1 Directory Format ... 10
1-7 Interpretation of ACPI Generic Error Status Block Fields.. 12
1-8 Meaning of MCi_MISC when MCACOD is 0x0E0B and MISCV=1................................ 15

4 Reference Number: 329176-001, Revision: 1.0

Revision History

§

Document
Number

Revision
Number Description Date

329176-001 1.01 • Initial Release April 2013

Reference Number: 329176-001, Revision: 1.0 5

MCA Enhancements in Future Intel® Xeon® Processors

CHAPTER 1
MCA ENHANCEMENTS IN FUTURE INTEL® XEON® PROCESSORS

1.1 INTRODUCTION
This white paper describes the software architecture and software flows associated with Enhanced MCA
Logging and IO MCA.

1.1.1 References
Intel® 64 and IA-32 Architectures Software Developer's Manual Volumes 3A, 3B and 3C: System
Programming Guide
ACPI 5.0 Specification, www.acpi.info
UEFI Specification 2.3.1, www.uefi.org

1.1.2 Definition of Terms
The following includes definition of terms and acronyms used in this document.

1.2 ENHANCED MCA LOGGING
Enhanced MCA Logging allows firmware to provide additional error information to system software,
synchronous with MCE or CMCI. MCE and CMCI are described in Chapter 15 of Volume 3B of the Intel®
64 and IA-32 Architectures Software Developer's Manual.

Table 1-1.Definitions

Term Definition

CMCI Corrected Machine Check Interrupt. Details can be found in Section 15.5 of
Volume 3B of the Intel® 64 and IA-32 Architectures Software Developer's
Manual.

DIMM Dual In-line Memory Module.

Enhanced MCA Logging Refers to improved Firmware First signaling and enhanced error logs that
complement machine check bank content. This feature is supported in future
generations of Intel® Xeon® Processors.

Intel® QPI Intel® QuickPath Interconnect.

IO MCA This feature allows IO errors to be reported via MCA mechanism.

MCA Machine Check Architecture. Chapter 15 of Volume 3B of the Intel® 64 and IA-
32 Architectures Software Developer's Manual describes the Machine Check
Architecture supported by processors supporting Intel Architecture.

MCE Machine Check Exception. Machine Check Exception and associated error code
architecture are described in Chapter 15 and 16 of Volume 3B of the Intel® 64
and IA-32 Architectures Software Developer's Manual.

Uncore Refers to the functionality in processor socket other than processor cores.
Uncore encompasses Intel QPI support logic, memory controller and so forth.

www.acpi.info
www.uefi.org

MCA Enhancements in Future Intel® Xeon® Processors

6 Reference Number: 329176-001, Revision: 1.0

1.2.1 Usage Model
Today's system software relies on machine check bank registers to determine the source of the error.
Machine check banks are implemented in hardware and can log a very limited amount of information
about the error.
Certain usages such as Predictive Failure Analysis (PFA) require more information about the error than
what can be described in processor machine check banks. Most server processors log additional infor-
mation about the error in processor uncore registers. Since the addresses and layout of these registers
vary widely from one processor to another, system software cannot readily make use of them. To
complicate matters further, some of the additional error information cannot be constructed without
detailed knowledge about platform topology. Enhanced MCA Logging allows firmware to provide addi-
tional error information to MCE/CMCI handler and thus addresses this gap.
The following section illustrates the benefit of Enhanced MCA Logging in the context of memory PFA. It
should be noted that the system software can benefit from Enhanced MCA Logs in many other ways.
For example, the additional information can be stored in system software Event logs or it can be used
to suggest a corrective action.

1.2.1.1 Enhanced MCA Logging and Memory PFA
Certain system software products monitor the health of the memory subsystem and are able to take
corrective actions to reduce the likelihood of an uncorrectable error. This ability is known as memory
PFA. Machine check banks generally capture the Physical Address of the failing location. However,
memory PFA algorithm needs to know about physical location (DIMM address) of the failure in order to
precisely record and take corrective action. The DIMM address is typically specified in terms of a DIMM
serial number and rank/bank/row/column number inside the DIMM. Constructing a DIMM address from
Physical address is a relatively complex process that needs to take into account many variables such as
memory DIMM internal layout, SMBUS routing on the motherboard and memory address interleaving
scheme.
This translation process cannot be readily implemented in processor hardware because of the following
reasons.
1. Complexity
2. Platform to Platform variation
Enhanced MCA Logging allows this algorithm to be implemented in platform specific firmware. Platform
firmware code can intercept the memory errors, compute the DIMM address and supply it to the
system software via Enhanced MCA Logging Interface.
In addition to the DIMM address, PFA requires more details about the cause of the error. For example,
PFA software may want to take different actions for DIMM correctable error and memory channel
correctable error as shown in the table below. PFA software may be unable to differentiate between the
two purely based on machine check register contents since both are logged as ordinary correctable
errors in the machine check bank. However, with the help of Enhanced MCA Logging, platform firmware
can provide more details about the cause of the error and thus enable richer PFA functionality.

1.2.2 Discovering support for Enhanced MCA Log
In order to discover support of Enhanced MCA Log, software is required to verify if the processor capa-
bility is available. If the processor reports that the capability exists, then it should check if the under-

Table 1-2.Likely Actions by Memory PFA Agent

Correctable Memory Error Cause Likely Memory PFA Agent Action

Memory DIMM correctable errors Evaluate if the memory page containing the failing
location needs to be off-lined.

Transient Memory Channel Error Ignore.

Reference Number: 329176-001, Revision: 1.0 7

MCA Enhancements in Future Intel® Xeon® Processors

lying BIOS supports reporting Enhanced MCA logs for software use. The platform supports Enhanced
MCA Log if MCG_ELOG_P capability is set in the processor (see Section 1.2.2.1) and BIOS/firmware
declares supports via an Intel specific ACPI DSM method (see Section 1.2.2.2).

1.2.2.1 Discovering Processor Capability
Bit 26 of IA32 MCG_CAP MSR indicates whether the processor supports Enhanced MCA Logging. When
MCG_ELOG_P is set, it indicates that the processor allows platform firmware to be invoked when an
error is detected so that it may provide additional platform specific information that augments the data
included in machine check banks. See Table 1-4.

1.2.2.2 Discovering Platform Capability
Enhanced MCA Logging is an optional platform capability. Enhanced MCA Logging capable firmware
provides additional information about the error to the system software by logging them in memory.
System software can traverse the data structures in the memory and locate the Enhanced Error Log.
The memory ranges used for these data structures is pre-allocated and reserved by firmware during
boot time. As a result, System software can construct linear address mapping at boot time and use that
mapping later.
BIOS reports support for Enhanced MCA Logging via an Intel specific ACPI DSM under the scope _SB.
See ACPI Specification for definition of DSM and _SB. The Enhanced MCA Logging Device Specific
Method is identified with a GUID shown in Table 1-5. If implemented, the Index function 1 returns the

Table 1-3.Enhanced MCA Log Discovery

MCG_ELOG_P
(IA32_MCG_CAP[26])

Does platform
support Enhanced

MCA Log?

Enhanced MCA Log
DSM

System Software
Behavior

0 NA.
Platform cannot
support Enhanced
MCA Log.

Don’t care. Concludes that Enhanced
MCA Log is not supported.
Shall not invoke Enhanced
MCA Log DSM.

1 No. BIOS does not report
Enhanced MCA L1 Directory
Pointer.
This can be accomplished
either by not implementing
DSM or by indicating Index 1
is not implemented.

Invokes Enhanced MCA Log
DSM if present, but
concludes that Enhanced
MCA Log Support is lacking.

1 Yes. Index 1 returns Enhanced
MCA L1 Directory Pointer.

Invokes Enhanced MCA Log
DSM in order to discover
Enhanced MCA L1 Directory
Pointer.

Table 1-4.Enhanced MCA Logging Capability

64 27 26 25 24 0

Reserved MCG_ELOG_P Reserved See Figure 15-2 of Software
Developer's manual Volume 3B.

MCA Enhancements in Future Intel® Xeon® Processors

8 Reference Number: 329176-001, Revision: 1.0

pointer to Enhanced MCA Level 1 (L1) Directory. The format of Enhanced MCA L1 Directory is described
in Section 1.2.3.

Table 1-5.Enhanced MCA Logging DSM

GUID Revision Index Description

663E35AF-CC10-41a4-
88EA-5470AF055295

0 0 Query: If the platform supports Enhanced MCA
Logging, the query function returns 3 and indicate
index 1 is implemented. If the platform does not
support Enhanced MCA Logging, the query
function returns 0 to indicate index 1 is not
implemented.

0 1 Implemented if the platform supports Enhanced
MCA Logging.
Evaluates to an integer and returns 64 bit address
of Enhanced MCA L1 Directory. The address must
be 4K aligned and points into Firmware reserved
memory. The address can be greater than 4 GB.
System software should cross-check this ad-dress
against number of Physical address bits supported
by the processor and ensure it points into
Firmware Reserved Memory and is 4K aligned. If
these checks fail, System software should not
make use of Enhanced MCA Logging.
The Enhanced MCA L1 directory pointer cannot
change during a given boot and the firmware
must guarantee that the return value will stay the
same for a given boot. System software is free to
invoke this function only once every boot and
cache the response.

Reference Number: 329176-001, Revision: 1.0 9

MCA Enhancements in Future Intel® Xeon® Processors

Sample Code

1.2.3 Memory Data Structures
Index 1 of Enhanced MCA Logging DSM returns the pointer to Enhanced MCA L1 Directory. Enhanced
MCA L1 Directory contains a header followed by a number of pointers to Error Log data structures
contained in Elog Directory. Various Enhanced Memory Log data structures and their relationship are
shown in Figure 1-1. M represents the number of L1 Directory Entries per logical processor. N repre-
sents the highest possible value of APIC ID. The following sections describe format of Enhanced MCA
L1 Directory and Error Log Directory in details.

MCA Enhancements in Future Intel® Xeon® Processors

10 Reference Number: 329176-001, Revision: 1.0

1.2.3.1 Enhanced MCA Level 1 Directory
Enhanced MCA L1 Directory structure starts with a header and is followed by list of Error Log (ELOG)
Directory Entry Pointers. All addresses in these data structures represent host physical addresses.
Machine check banks can be shared between logical processors. The sharing scheme varies with
processor model. Each entry in Elog Directory corresponds to one Physical Machine Check bank.
Enhanced MCA L1 Directory provides a level of indirection between the logical processor's view of
machine check banks and the physical machine check banks.
This is illustrated in Figure 1-1. Bank M-1 is shared between Processor 0 and Processor 1. Hence these
two entries in L1 Directory point to one and the same Error Log Directory entry.
The format of L1 Directory is shown below. All numbers are in decimal format.

Figure 1-1. Enhanced MCA Error Log Data Structures

Table 1-6.Enhanced MCA L1 Directory Format

Field Byte Length Byte Offset Description

Header

Version 4 0 Header Version in major.minor format. This field is
set to 0100 to represent version 1.00.

Header Length 4 4 Length, in bytes, of this header. For version 1.00,
this field shall contain the value 64.

L1 Directory Length 8 8 Length, in bytes, of the entire L1 Pointer Directory
including this header.

Elog Directory Base 8 16 This is the base address of Error Log Structure
Directory.

Elog Directory Length 8 24 Length, in bytes, of the entire Error Log Directory.

Reference Number: 329176-001, Revision: 1.0 11

MCA Enhancements in Future Intel® Xeon® Processors

System software can use the base and the length fields in Enhanced MCA L1 Directory Header to allo-
cate memory if it wants to maintain a local copy of Error Log structures.
The memory range that contains Enhanced MCA L1 directory is pre-allocated by BIOS at boot time and
is declared as part of Firmware Reserved memory. The size of L1 directory is large enough so as to
accommodate processors that may be hot added.
Enhanced MCA L1 directory header is followed by an array of Elog Directory Entry Pointers. System
software can locate the Elog Directory Entry by indexing into this Array. The index value corresponding
to machine bank i on processor with X2APIC ID x is governed by the equation.
Index = x * Number of L1 Entries per Logical Processors + i
Number of L1 Entries per Logical Processors is derived from offset 48 of the L1 Directory Header. The
first machine check bank, i=0 always starts at MSR address 400H. Machine check bank i starts at MSR
address 400H+4 * i.

1.2.3.2 Error Log Directory
Error Log (Elog) Directory is a contiguous data structure. It contains a number of entries, each of which
is in the form of an ACPI Generic Error Data structure. Each Elog Directory Entry will contain exactly
one Generic Error Status Block Structure. Table 1-7 describes interpretation of various Generic Error
Status Block fields when used in Enhanced MCA context. The memory range that contains Elog Direc-

Flags 4 32 Bit 0 - System software Opt-in. Enhanced MCA
Log capable BIOS initializes this flag to 0. An
Enhanced MCA Log aware System software opts
into Enhanced MCA Logging by setting this flag to
1 during initialization.
BIOS may be capable of signaling certain errors
via two paths - Enhanced Machine check
architecture or via ACPI Generic Hardware
Source. If this flag is set, BIOS will surface such
errors via Enhanced MCA Architecture
mechanism. If this flag is clear, BIOS may surface
such errors via alternate mechanism.
Bits 31:1 are reserved.

Reserved 12 36 Reserved

Number of L1 Entries per
Logical Processors

4 48 The number of L1 directory entries per logical
processor.

Reserved 12 52 Reserved

Elog Directory Entry
Pointers[n]

- 64 This field is 8 bytes in size.
63 62 0

If Valid (Bit 63) is set, bits 62:0 contain the
physical address of corresponding valid ACPI
Generic Error Status Block structure. Each such
structure must be 4KB aligned. If Bit 63 is not set,
bits 62:0 are invalid.
These pointers are pre-populated by the BIOS at
boot time for all logical processors that are
present.

Table 1-6.Enhanced MCA L1 Directory Format

Field Byte Length Byte Offset Description

Valid ElogPointer

MCA Enhancements in Future Intel® Xeon® Processors

12 Reference Number: 329176-001, Revision: 1.0

tory is pre-allocated by BIOS at boot time and is declared as part of Firmware Reserved memory. The
size of Elog directory is large enough so as to accommodate processors that may be hot added.

1.2.4 Software Flows
The combined firmware and software flow is shown in Figure 1-2. As shown, the hardware generates
an SMI upon error. The SMI handler pre-processes the error and constructs Error Log in memory prior
to continuing with the MCE or CMCI.

Table 1-7.Interpretation of ACPI Generic Error Status Block Fields

Field Byte
Length

Byte
Offset Description

Block Status 4 0 Indicates the type of error information reported in the error
packet. The bit definition is consistent with ACPI 5.0
specification.
This field is also used for record management. The usage is
consistent with ACPI 5.0 specification.
If the field contains a 0, it indicates that record is either
invalid or is consumed by the system software. System
software should not attempt to access this record. Platform
Firmware can update the contents of the record when Block
Status is 0.
If the field contains a value other than 0, it indicates that
Platform Firmware has placed a valid data in MCA Elog, but
system software has not consumed it. Platform Firmware
can choose to overwrite the Elog, but must follow MCA
overwrite rules if it does.

Raw Data Offset 4 4 Offset in bytes from the beginning of the Error Status Block
to raw error data, per ACPI 5.0 specification.

Raw Data Length 4 8 Length in bytes of the raw data, per ACPI 5.0 specification.

Data Length 4 12 Length in bytes of the generic error data, per ACPI 5.0
specification.

Error Severity 4 16 Identifies the error severity of the reported error. Enhanced
MCA usage is consistent with ACPI Specification.

Generic Error Data
Entries

Data
Length

20 In the context of Enhanced MCA Error log, the information
contained in this field is a collection of one or more Generic
Error Data Entries. The format of Generic Error Data Entry is
defined in ACPI 5.0 Specification.

Reference Number: 329176-001, Revision: 1.0 13

MCA Enhancements in Future Intel® Xeon® Processors

The subsequent sections describe the system software Initialization flow and system software Runtime
flow.

1.2.4.1 Enhanced MCA Log Initialization
Enhanced MCA Log aware system software will execute the following steps during MCA initialization.
1. Determine whether the processor supports Enhanced MCA Log feature by reading MCG_ELOG_P

capability bit in IA32_MCG_CAP MSR. If MCG_ELOG_P is 0, skip Enhanced MCA Log Initialization
and do not make use of Enhanced MCA Log feature.

2. If Enhanced MCA Log DSM method (Section 1.2.2.2) is not present, skip Enhanced MCA Log Ini-
tialization and do not make use of Enhanced MCA Log feature.

3. If Enhanced MCA Log DSM method (Section 1.2.2.2) is present, invoke index 0. If bit 1 is not set
in the return value, skip Enhanced MCA Log Initialization and do not make use of Enhanced MCA
Log.

4. Invoke index 1. If the return value is greater than the physical address space of the processor or
does not point to an address inside Firmware Reserved Address Space or is not 4K aligned, skip
Enhanced MCA Log Initialization and do not make use of Enhanced MCA Log.

5. If Index 1 returns a valid pointer, de-reference it to locate L1 Directory.
6. Parse L1 Directory Header. System software can statically allocate sufficient memory to hold the

necessary data structures and compute linear addresses corresponding to these physical
addresses.

7. Set system software Opt-in flag in L1 Header.

1.2.4.2 Runtime Flow
Enhanced MCA Logging aware system software will execute the following steps during MCE/CMCI
handling if it detected Enhanced MCA Log support during initialization:
1. Use existing algorithms to select one or more logical processors that can query machine check

banks for error status.
2. The logical processor that is processing the error determines its own X2APIC ID (or XAPIC ID if it

is in legacy XAPIC mode). Let's say the APIC ID is A.
3. Use existing algorithms to locate the MCA bank(s) associated with the MCA or CMCI event. Let's

Figure 1-2. Combined Flow

MCA Enhancements in Future Intel® Xeon® Processors

14 Reference Number: 329176-001, Revision: 1.0

say this is bank number B.
4. Initialize ELOG_FOUND=FALSE.
5. If Enhanced MC Logging is not supported by platform, fall back to legacy MCA handling.
6. Locate the L1 Dir Entry corresponding to this <A,B> pair. This L1 Dir Entry is at the address [L1

Dir Base + L1 Dir Header Size + 8 * (A * Number of L1 Entries per Logical Processors + B)]. This
process may involve physical address to linear address translations, unless system software is
using pre-translated addresses.

7. If Elog Dir Entry Pointer is not valid (bit 63=0), assume that there is no enhanced Log for this
error event. System software should proceed with legacy MCA handling.

8. If Elog Dir Entry Pointer is valid (bit 63=1), Bits 62:0 of L1 Dir Entry has the ad-dress of the Elog
Entry. Validate this pointer to ensure it points into firmware reserved address range.

9. Read first DWORD of the Elog entry.

a. If the field contains a value other than 0, it indicates that BIOS has placed a valid data in MCA
Elog.

i. Copy the record to its local buffers and clear the first DWORD of Elog Entry.

ii. Set ELOG_FOUND=TRUE to ensure Enhanced MCA Log is processed along with MCA Bank
contents. The Enhanced MCA Log contents may not be consistent with MCA Bank in case of
an overwrite condition.

b. If the field contains a 0, there is no MCA error log record. Fall back to legacy MCA handling.

1.3 IO MCA
Logging and Signaling of errors from PCI Express domain is governed by PCI Express Advanced Error
Reporting (AER) architecture. PCI Express architecture divides errors in two categories: Uncorrectable
errors and Correctable errors. Uncorrectable errors can further be classified as Fatal or Non-Fatal.
Uncorrected IO errors are signaled to the system software either as AER Message Signaled Interrupt
(MSI) or via platform specific mechanisms such as NMI. Generally, the signaling mechanism is
controlled by BIOS and/or platform firmware. IO MCA is a processor error handling mode where Uncor-
rected PCI Express errors are signaled in the form of machine check exception and logged in machine
check banks.
When processor is in IO MCA mode, Uncorrected PCI Express errors are logged in the MCACOD field of
the IA32_MCi_STATUS register as Bus and Interconnect compound error code of
0000_1110_0000_1011 (0x0E0B). Refer to volume 3, section 15.9.2.5 in Intel® 64 and IA-32 Archi-
tectures Software Developer's Manual for encoding of Bus and Interconnect Errors. Machine check
logging complements and does not replace AER logging that occurs inside the PCI Express hierarchy.
The PCI Express Root Complex and Endpoints continue to log the error in accordance with PCI Express
AER mechanism. In IO MCA mode, MCi_MISC register in the bank that logged IO MCA can optionally
contain information that link the Machine Check logs with the AER logs. In such scenario, the machine
check handler can utilize the contents of MCi_MISC to locate the PCI Express AER logs corresponding
to the same error. Specifically, if MCi_Status.MISCV is 1 and MCACOD is 0x0E0B, MCi_MISC contains
the PCI Express address of the Root Complex device containing the AER Logs. Software can consult the
header type and class code registers in the Root Complex device's PCIe Configuration space to deter-
mine what type of device it is. Errors that originate from PCI Express or Legacy Endpoints are logged in
the corresponding Root Port in addition to the generating device. In this case, MCi_MISC contains the
address of the Root Port if MISCV=1 and software can parse the Root Port AER logs to learn more about
the error.

Reference Number: 329176-001, Revision: 1.0 15

MCA Enhancements in Future Intel® Xeon® Processors

The format of MCi_MISC for IO MCA errors is shown in Table 1-8.

Table 1-8.Meaning of MCi_MISC when MCACOD is 0x0E0B and MISCV=1

63:40 39:32 31:16 15:9 8:6 5:0

Reserved PCI Express
Segment
Number1

Notes:
1.Refer to PCI Firmware Specification 3.0 for an explanation of PCI Express Segment Number and

how software can access configuration space of a PCI Express Device given the segment number
and Requestor ID.

PCI Express
Requestor ID2

2.Refer to PCI Express Specification 3.0 for definition of PCI Express Requestor ID and AER architec-
ture.

Reserved ADDR MODE3

3.Not Applicable if ADDRV=0

 RECOV
ADDR LSB4

4.Not Applicable if ADDRV=0

MCA Enhancements in Future Intel® Xeon® Processors

16 Reference Number: 329176-001, Revision: 1.0

	MCA Enhancements in Future Intel® Xeon® Processors
	Chapter 1 MCA Enhancements in Future Intel® Xeon® Processors
	1.1 Introduction
	1.1.1 References
	1.1.2 Definition of Terms

	1.2 Enhanced MCA Logging
	1.2.1 Usage Model
	1.2.1.1 Enhanced MCA Logging and Memory PFA
	1. Complexity
	2. Platform to Platform variation

	1.2.2 Discovering support for Enhanced MCA Log
	1.2.2.1 Discovering Processor Capability
	1.2.2.2 Discovering Platform Capability

	1.2.3 Memory Data Structures
	1.2.3.1 Enhanced MCA Level 1 Directory
	1.2.3.2 Error Log Directory

	1.2.4 Software Flows
	1.2.4.1 Enhanced MCA Log Initialization
	1. Determine whether the processor supports Enhanced MCA Log feature by reading MCG_ELOG_P capability bit in IA32_MCG_CAP MSR. If MCG_ELOG_P is 0, skip Enhanced MCA Log Initialization and do not make use of Enhanced MCA Log feature.
	2. If Enhanced MCA Log DSM method (Section 1.2.2.2) is not present, skip Enhanced MCA Log Initialization and do not make use of Enhanced MCA Log feature.
	3. If Enhanced MCA Log DSM method (Section 1.2.2.2) is present, invoke index 0. If bit 1 is not set in the return value, skip Enhanced MCA Log Initialization and do not make use of Enhanced MCA Log.
	4. Invoke index 1. If the return value is greater than the physical address space of the processor or does not point to an address inside Firmware Reserved Address Space or is not 4K aligned, skip Enhanced MCA Log Initialization and do not make use o...
	5. If Index 1 returns a valid pointer, de-reference it to locate L1 Directory.
	6. Parse L1 Directory Header. System software can statically allocate sufficient memory to hold the necessary data structures and compute linear addresses corresponding to these physical addresses.
	7. Set system software Opt-in flag in L1 Header.

	1.2.4.2 Runtime Flow
	1. Use existing algorithms to select one or more logical processors that can query machine check banks for error status.
	2. The logical processor that is processing the error determines its own X2APIC ID (or XAPIC ID if it is in legacy XAPIC mode). Let's say the APIC ID is A.
	3. Use existing algorithms to locate the MCA bank(s) associated with the MCA or CMCI event. Let's say this is bank number B.
	4. Initialize ELOG_FOUND=FALSE.
	5. If Enhanced MC Logging is not supported by platform, fall back to legacy MCA handling.
	6. Locate the L1 Dir Entry corresponding to this <A,B> pair. This L1 Dir Entry is at the address [L1 Dir Base + L1 Dir Header Size + 8 * (A * Number of L1 Entries per Logical Processors + B)]. This process may involve physical address to linear addre...
	7. If Elog Dir Entry Pointer is not valid (bit 63=0), assume that there is no enhanced Log for this error event. System software should proceed with legacy MCA handling.
	8. If Elog Dir Entry Pointer is valid (bit 63=1), Bits 62:0 of L1 Dir Entry has the ad-dress of the Elog Entry. Validate this pointer to ensure it points into firmware reserved address range.
	9. Read first DWORD of the Elog entry.
	a. If the field contains a value other than 0, it indicates that BIOS has placed a valid data in MCA Elog.
	i. Copy the record to its local buffers and clear the first DWORD of Elog Entry.

	1.3 IO MCA

