
Flatpak Documentation

Flatpak Team

nov. 13, 2018





Table des matières

1 Contenu 3
1.1 Introduction à Flatpak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Débuter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Publier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Desktop Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Documentation de référence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

i



ii



Flatpak Documentation

Cette documentation couvre tout ce que vous devez savoir pour contruire et distribuer des applications à l’aide de
Flatpak. Elle débute par une introduction basique à Flatpak, des informations sur les concepts basiques et un guide
l’interface en ligne de commande flatpak. Les sections suivantes fournissent des informations détaillées sur la construc-
tion et la distribution des applications.

Cette documentation est principalement à l’attention des développeurs et distributeurs d’applications. Son contenu est
aussi pertinent à ceux qui souhaitent posséder une connaissance générale sur Flatpak.

Si vous cherchez des informations sur comment utiliser Flatpak pour installer et lancer des applications, veuillez vous
référez au site web Flatpak.

Table des matières 1

http://flatpak.org


Flatpak Documentation

2 Table des matières



CHAPITRE 1

Contenu

1.1 Introduction à Flatpak

Flatpak is a framework for distributing desktop applications on Linux. It has been created by developers who have a
long history of working on the Linux desktop, and is run as an independent open source project.

1.1.1 Target audience

Flatpak can be used by all kinds of desktop applications, and aims to be as agnostic as possible regarding how applica-
tions are built. There are no requirements regarding which programming languages, build tools, toolkits or frameworks
can be used.

While Flatpak only runs on Linux, it can be used by applications that target other operating systems, as well as those
that are Linux-specific. Applications can be open source or proprietary (although some distribution services, like
Flathub, can have restrictions in this respect).

The only technical requirements made by Flatpak are that applications follow a small number of Freedesktop standards,
in order to enable desktop integration (see Requirements & Conventions).

1.1.2 Reasons to use Flatpak

Flatpak has some major advantages over other approaches to distributing applications on Linux. First and foremost,
Flatpak allows a single application build to be installed and run on virtually any Linux distribution. It can also be
used in combination with Flathub, a centralized service for distributing applications on all distributions. This makes it
possible for application developers to target the entire Linux desktop market from one place.

Flatpak also offers native integration for the main Linux desktops, so that users can easily browse, install, run and use
Flatpak applications through their existing desktop environment and tools.

Other benefits for developers include :
— Forward-compatibility : the same Flatpak can be run on different versions of the same distribution, inclu-

ding versions that haven’t been released yet. This doesn’t require any changes or management by application
developers.

3

https://flathub.org/
https://flathub.org/


Flatpak Documentation

— Maintained platforms : called runtimes, these contain collections of dependencies, which can be used by
applications, and which can take a lot of the work out of application development.

— Bundling : this allows application developers to ship almost any dependency or library as part of their appli-
cation. This gives complete control over which software is used to build applications.

— Consistent application environments : because these are the same across devices, applications perform as
intended. This also makes it easier to identify bugs and to do testing.

Finally, while Flatpak does provide a centralized service for distributing applications, it also allows decentralized
hosting and distribution, so that application developers or downstreams can host their own applications and application
repositories.

Information about Flatpak’s internals can be found in Under the Hood.

1.2 Débuter

Cette section inclus une introduction aux concepts basiques de Flatpak, un guide sur comment utiliser l’interface en
ligne de commande Flatpak, et un tutoriel pour construire une application simple.

Pour compléter cette section, Flatpak devrait etre installé et le dépôt Flathub devrait être activé. Le site Flatpak fournit
les instructions pour faire cela pour une large liste de distributions.

1.2.1 Concepts basiques

Flatpak can be understood through a small number of key concepts. It is useful to be familiar with these before learning
about how to use Flatpak from the command line, or using it to build applications.

Runtimes

Runtimes provide the basic dependencies that are used by applications. Each application must be built against a run-
time, and this runtime must be installed on a host system in order for the application to run (Flatpak can automatically
install the runtime required by an application). Multiple different runtimes can be installed at the same time, including
different versions of the same runtime.

Runtimes are distribution agnostic and do not depend on particular distribution versions. This means that they provide
a stable, cross-distribution base for applications, and allow applications to continue to work irrespective of operating
system updates.

Bundled libraries

If an application requires any dependencies that aren’t in its runtime, they can be bundled as part of the application.
This gives application developers flexibility regarding the dependencies that they use, including using :

— libraries that aren’t available in a distribution or runtime
— different versions of libraries from the ones that are in a distribution or runtime
— patched versions of libraries

Bacs à sable

With Flatpak, each application is built and run in an isolated environment, which is called the “sandbox”. Each sandbox
contains an application and its runtime. By default, the application can only access the contents of its sandbox. Access

4 Chapitre 1. Contenu

https://flatpak.org/setup/


Flatpak Documentation

to user files, network, graphics sockets, subsystems on the bus and devices have to be explicitly granted. Access to
other things, such as other processes, is deliberately not possible.

By necessity, some resources that are inside the sandbox need to be exposed outside, to be used by the host system.
These are known as “exports”, since they are files that are exported out of the sandbox, and include things like the
application’s .desktop file and icon.

Portails

Portals are a mechanism through which applications can interact with the host environment from within a sandbox.
They give the ability to interact with data, files and services without the need to add sandbox permissions.

Examples of capabilities that can be accessed through portals include opening files through a file chooser dialog, or
printing. Interface toolkits can implement transparent support for portals, so access to resources outside of the sandbox
will work securely and out of the box.

D’avantages d’informations à propos des portails peut être trouvés dans Sandbox Permissions.

Dépôts

Flatpak applications and runtimes are typically stored and published using repositories, which behave very similarly
to Git repositories. A Flatpak repository can contain a single object or multiple objects, and each object is versioned,
which allows upgrading and even downgrading.

Each system which is using Flatpak can be configured to access any number of remote repositories. Once a system
has been configured to access a “remote”, the remote repository’s content can be inspected and searched, and it can be
used as the source of applications and runtimes.

When an update is performed, new versions of installed applications and runtimes are downloaded from the relevant
remotes. Like with Git, only the difference between versions is downloaded, which makes the process very efficient.

1.2.2 Utiliser Flatpak

Cette page fournit une introduction à l’interface en ligne de commande flatpak et explique les concepts techniques,
les conventions ainsi que les commandes les plus usuelles.

Les utilisateurs finaux n’ont généralement pas besoin d’utiliser cette page ou l’interface en ligne de commande Flatpak,
puisque Flatpak peut être facilement utiliser à travers des outils graphiques de gestion de logiciels, néanmoins ils sont
libres d’utiliser la ligne de commande s’il le préfère !

La commande flatpak

flatpak est la commande Flatpak principale à laquelle des commandes spécifiques sont ajoutées. Par exemple, la
commande pour installer quelque-chose est flatpak install et la commande pour désinstaller est flatpak
uninstall.

Identifiants

Flatpak identifie chaque application et runtime à l’aide d’un identifiant unique en trois parties, tel que com.
company.App. Le segment final de cette adresse est le nom de l’objet et la partie précédente identifie le développeur,
ainsi le meme développeur peut avoir plusieurs applications comme com.company.App1 et com.company.
App2.

1.2. Débuter 5



Flatpak Documentation

Triplets d’identification

Habituellement il suffit de se référer aux objets à l’aide de leur identifiant. Néanmoins, dans certaines situations il
est nécessaire de se référer à une version spécifique d’un objet ou à une architecture spécifique. Par exemple des
applications peuvent être disponible en version stable et de test, dans ce cas, il est nécessaire de spécifier laquelle vous
désirez installer.

Flatpak allows architectures and versions to be specified using an object’s identifier triple. This takes the form of
name/architecture/branch, such as com.company.App/i386/stable. (Branch is the term used to re-
fer to versions of the same object.) The first part of the triple is the ID, the second part is the architecture, and the third
part is the branch.

Identifier triples can also be used to specify just the architecture or the branch, by leaving part of the triple blank. For
example, com.company.App//stable would just specify the branch, and com.company.App/i386// just
specifies the architecture.

The Flatpak CLI provides feedback if the architecture or branch of an object needs to be specified.

Système vis-à-vis utilisateur

Flatpak commands can be run either system-wide or per-user. Applications and runtimes that are installed system-wide
are available to all users on the system. Applications and runtimes that are installed per-user are only available to the
users that installed them.

The same principle applies to repositories - repositories that have been added system-wide are available to all users,
whereas per-user repositories can only be used by a particular user.

Les commandes Flatpak sont exécutées au niveau système par défaut. SI vous installez des applications pour votre
utilisation au quotidien, il est recommandé de s’en tenir à ce comportement par défaut.

However, running commands per-user can be useful for testing and development purposes, since objects that are
installed in this way won’t be available to other users on the system. To do this, use the --user option, which can be
used in combination with most flatpak commands.

Les commandes réagissent de la même manière si elles sont lancées en tant qu’utilisateur plutôt qu’au niveau système.

Commandes basiques

This section covers basic commands needed to install, run and manage Flatpak applications. For the full list of Flatpak
commands, run flatpak --help or see the Référence des commandes Flatpak.

Lister les dépôts distants

Pour lister les dépôts distants configurés sur votre système, lancez :

$ flatpak remotes

Cela donne la liste des dépots distants qui sont ajoutés. La liste indique si chaque dépôt à été ajouté au niveau du
système ou de l’utilisateur.

Ajout d’un dépôt distant

La manière la plus facile pour ajouter un dépôt est en utilisant un fichier .flatpakrepo, qui inclut les détails du
dépôt distant et sa clé GPG :

6 Chapitre 1. Contenu



Flatpak Documentation

$ flatpak remote-add --if-not-exists flathub https://dl.flathub.org/repo/flathub.
→˓flatpakrepo

Ici, flathub est le nom local qui est donné au dépôt distant. L’URL pointe vers le fichier .flatpakrepo distant.
--if-not-exists empêche la command de produire une erreur si le dépôt existe déjà.

Suppression d’un dépôt distant

Pour supprimer un dépôt distant, lancez :

$ flatpak remote-delete flathub

Dans ce cas, flathub est le nom local du dépôt distant.

Recherche

Les application peuvent trouvées dans n’importe quel des dépôts distants à l’aide de la commande search. Par
exemple :

$ flatpak search gimp

La recherche retournera toute application correspondant au terme de la recherche. Chaque résult de la recherche
include l’ID de l’application et le dépôt distant auquel elle appartient. Dans cet exemple, le terme de recherche est
gimp.

Note : Prior to Flatpak 0.11.1, it was necessary to manually update the metadata for your remotes before search will
work. This can be done by either running flatpak update or flatpak update --appstream.

Installation d’applications

Pour installer une application, lancez :

$ flatpak install flathub org.gimp.GIMP

Ici, flathub est le nom du dépôt distant depuis lequel l’application est installée, et org.gimp.GIMP‘ est l’ID de
l’application.

Parfois, une application nécessitera un runtime particulier, et il sera installé avant l’application.

Les détails de l’application à installer peut aussi être fournis par un fichier .flatpakref, qui peut être distant ou
local. Pour spécifier un fichier .flatpakref au lieu de fournir manuellement le dépôt distant et l’ID de l’application,
exécutez :

$ flatpak install https://flathub.org/repo/appstream/org.gimp.GIMP.flatpakref

Si le fichier .flatpakref spécifie que l’application doit être installé depuis une dépôt distant qui n’a pas été déjà
ajouté, il vous sera demander si il doit être ajouté avant d’installer l’application.

1.2. Débuter 7



Flatpak Documentation

Lancement d’applications

Une fois une application installée, elle peut être lancée en utilisant la commande run et l’ID de l’application :

$ flatpak run org.gimp.GIMP

Mise à jour

Pour mettre à jour toutes les applications et les runtimes installés à la dernière version, exécutez :

$ flatpak update

Lister les application installées

Pour lister les applications et les runtimes que vous avez installé, exécutez :

$ flatpak list

Alternativement, pour juste lister les application installer, lancez :

$ flatpak list --app

Suppression d’une application

Pour supprimer une application, exécutez :

$ flatpak uninstall org.gimp.GIMP

1.2.3 Construire votre premier Flatpak

Ce tutoriel fournit une rapide introduction pour la construction de flatpaks. À l’intérieur, vous apprendrez comment
créer une application Flatpak basique, qui peut être installée et lancée.

Afin de compléter ce tutoriel, vous devriez avoir suivi le guide de configuration sur flatpak.org. Vous aurez aussi besoin
d’avoir installé flatpak-builder, qui est habituellement disponible dans le même dépôt que le paquet flatpak
package.

1. Installer un runtime et le SDK correspondant

Flatpak requires every app to specify a runtime that it uses for its basic dependencies. Each runtime has a matching
SDK (Software Development Kit), which contains all the things that are in the runtime, plus headers and development
tools. This SDK is required to build apps for the runtime.

In this tutorial we will use the Freedesktop 18.08 runtime and SDK. To install these, run :

$ flatpak install flathub org.freedesktop.Platform//18.08 org.freedesktop.Sdk//18.08

8 Chapitre 1. Contenu

http://flatpak.org/setup/


Flatpak Documentation

2. Créer une application

L’application qui va être créée dans ce tutoriel est un simple script. Pour le créer, copiez le code suivant :

#!/bin/sh
echo "Hello world, from a sandbox"

Maintenant collez cela dans un fichier vide et sauvez-le sous le nom hello.sh.

3. Ajouter un manifeste

Each Flatpak is built using a manifest file which provides basic information about the application and instructions for
how it is to be built. To add a manifest to the hello world app, add the following to an empty file :

{
"app-id": "org.flatpak.Hello",
"runtime": "org.freedesktop.Platform",
"runtime-version": "18.08",
"sdk": "org.freedesktop.Sdk",
"command": "hello.sh",
"modules": [

{
"name": "hello",
"buildsystem": "simple",
"build-commands": [

"install -D hello.sh /app/bin/hello.sh"
],
"sources": [

{
"type": "file",
"path": "hello.sh"

}
]

}
]

}

Now save the file alongside hello.sh and call it org.flatpak.Hello.json.

In a more complex application, the manifest would list multiple modules. The last one would typically be the applica-
tion itself, and the earlier ones would be dependencies that are bundled with the app because they are not part of the
runtime.

4. Construire une application

Now that the app has a manifest, flatpak-builder can be used to build it. This is done by specifying the manifest
file and a target directory :

$ flatpak-builder build-dir org.flatpak.Hello.json

This command will build each module that is listed in the manifest and install it to the /app subdirectory, inside the
build-dir directory.

1.2. Débuter 9



Flatpak Documentation

5. Test the build

To verify that the build was successful, run the following :

$ flatpak-builder --run build-dir org.flatpak.Hello.json hello.sh

Congratulations, you’ve made an app !

Keep in mind that using --run won’t result in a sandbox with the same permissions as the final app, as such it
shouldn’t be relied upon beyond basic testing.

6. Put the app in a repository

Before you can install and run the app, it first needs to be put in a repository. This is done by passing the --repo
argument to flatpak-builder :

$ flatpak-builder --repo=repo --force-clean build-dir org.flatpak.Hello.json

This does the build again, and at the end exports the result to a local directory called repo. Note that
flatpak-builder keeps a cache of previous builds in the .flatpak-builder subdirectory, so doing a se-
cond build like this is very fast.

This second time we passed in --force-clean, which means that the previously created build-dir directory
was deleted before the new build was started.

7. Install the app

Now we’re ready to add the repository that was just created and install the app. This is done with two commands :

$ flatpak --user remote-add --no-gpg-verify tutorial-repo repo
$ flatpak --user install tutorial-repo org.flatpak.Hello

The first command adds the repository that was created in the previous step. The second command installs the app
from the repository.

Both these commands use the --user argument, which means that the repository and the app are added per-user
rather than system-wide. This is useful for testing.

Note that the repository was added with --no-gpg-verify, since a GPG key wasn’t specified when the app was
built. This is fine for testing, but for official repositories you should sign them with a private GPG key.

8. Run the app

All that’s left is to try the app. This can be done with the following command :

$ flatpak run org.flatpak.Hello

This runs the app, so that it prints “Hello world, from a sandbox”.

1.3 Construction

Cette section contient des informations détaillées sur comment construire des applications en tant que Flatpak. Elle
débute avec un aperçu du processus de construction avant de plonger dans les exigences pour les applications, un guide
pour les décisions clés, des informations pour utiliser flatpak-builder et comment écrire des fichiers manifestes.

10 Chapitre 1. Contenu



Flatpak Documentation

Si ne l’avez pas déjà fait, il est recommandé de jeter un coup d’œil à Construire votre premier Flatpak avant de lire
cette section.

1.3.1 Building Introduction

Construire votre premier Flatpak has already provided a quick demonstration of how applications get built with Flat-
pak. This page provides an additional general overview of what’s involved.

flatpak-builder

flatpak-builder is the primary tool for building Flatpak applications. It allows you to take the source files for
an application and build it into a Flatpak application. It also allows multiple other dependencies to be built at the same
time, which get bundled into the build.

The input to flatpak-builder is a manifest file. This specifies the parameters for the application that will be built,
such as its name and which runtime it will depend on. The manifest also lists all the modules that are to be built as
part of the build process. A source for each module can be specified, including links to file archives or version control
repositories. One of the modules (usually the last one) is the application code itself.

The basic format used to invoke flatpak-builder is :

$ flatpak-builder <build-dir> <manifest>

Where <build-dir> is the path to the directory that the application will be built into, and <manifest> is the path
to a manifest file. The contents of <build-dir> can be useful for testing and debugging purposes, but is generally
treated as an artifact of the build process.

When flatpak-builder is run :
— The build directory is created, if it doesn’t already exist
— The source code for each module is downloaded and verified
— The source code for each module is built and installed
— The build is finished, by setting sandbox permissions
— The build result is exported to a repository (which will be created if it doesn’t exist already)

The application can then be installed from the repository and run.

Software Development Kits (SDKs)

Instead of being built using the host environment, Flatpak applications are built inside a separate environment, called
an SDK.

SDKs are like the regular runtime that applications run in. The difference is that SDKs also include all the development
resources and tools that are required to build an application, such as build and packaging tools, header files, compilers
and debuggers.

Each runtime has an accompanying SDK. For example, there is both a GNOME 3.26 runtime and a GNOME 3.26
SDK. Applications that use the runtime are built with the matching SDK.

Like runtimes, SDKs will sometimes be automatically installed for you, but if you do need to manually install them,
they are installed in the same way as applications and runtimes, such as :

$ flatpak install flathub org.gnome.Sdk//3.26

1.3. Construction 11



Flatpak Documentation

1.3.2 Requirements & Conventions

Flatpak deliberately makes as few requirements of applications as possible. However, a small number of standard
Linux desktop conventions are expected, primarily to ensure that applications integrate with Linux desktops and app
centers. Developers might also encounter a small number of Linux technical conventions.

Information on further desktop integration options can be found in Desktop Integration.

Expected Standards

Applications that use Flatpak are generally expected to comply with the following standards. Applications that have
previously targeted the Linux desktop will typically need to make very few (if any) changes to do this.

Application IDs

As described in Utiliser Flatpak, Flatpak requires each application to have a unique identifier, which has a three-part
form such as org.gnome.Dictionary. As will be seen below and in future sections, this ID is expected to be
used in a number of places. Developers should follow the standard D-Bus naming conventions when creating their
own IDs. This format is already recommended by the Desktop File specification and Appstream specification also.

AppData files

AppData files provide metadata about applications, which is used by application stores (such as Flathub, GNOME
Software and KDE Discover). The Freedesktop AppStream specification provides a complete reference for providing
AppData.

AppData files should be named with the application ID and the .appdata.xml file extension, and should be placed
in /app/share/metainfo/. For example :

/app/share/metainfo/org.gnome.Dictionary.appdata.xml

The appstream-util validate-relax command can be used to check AppData files for errors.

Application icons

Applications are expected to provide an application icon, which is used for their application launcher. These icons
should be provided in accordance with the Freedesktop icon specification.

Icons should be named with the application’s ID, be in either PNG or SVG format, and must be placed in the standard
location :

/app/share/icons/hicolor/$size/apps/

For example, the path to the 128128px version of GNOME Dictionary’s icon is :

/app/share/icons/hicolor/128x128/apps/org.gnome.Dictionary.png

12 Chapitre 1. Contenu

https://dbus.freedesktop.org/doc/dbus-specification.html#message-protocol-names
https://specifications.freedesktop.org/desktop-entry-spec/desktop-entry-spec-latest.html#file-naming
https://www.freedesktop.org/software/appstream/docs/chap-Metadata.html#sect-Metadata-GenericComponent
https://www.freedesktop.org/software/appstream/docs/
https://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html


Flatpak Documentation

Desktop files

Desktop files are used to provide the desktop environment with information about each application. The Freedesktop
specification provides a complete reference for writing desktop files, and additional information about them is available
online.

Desktop files should be named with the application’s ID, followed by the .desktop file extension, and should be
placed in /app/share/applications/. For example :

/app/share/applications/org.gnome.Dictionary.desktop

A minimal desktop file should contain at least the application’s name, exec command, type, icon name and categories :

[Desktop Entry]
Name=Gnome Dictionary
Exec=org.gnome.Dictionary
Type=Application
Icon=org.gnome.Dictionary
Categories=GNOME;GTK;Office;Dictionary;

The desktop-file-validate command can be used to check for errors in desktop files.

Technical conventions

The following are standard technical conventions used by Flatpak and Linux desktops. Those with Linux experience
will likely already be aware of them. However, developers who are new to Linux might find some of this information
useful.

D-Bus

D-Bus is the standard IPC framework used on Linux desktops. A lot of applications won’t need to use it, but it is
supported by Flatpak should it be required.

D-Bus can be used for application launching and communicating with some system services. Applications can also
provide their own D-Bus services (when doing this, the D-Bus service name is expected to be the same as the applica-
tion ID).

Filesystem layout

Each Flatpak sandbox, which is the environment in which an application is run, contains the filesystem of the applica-
tion’s runtime. This follows standard Linux filesystem conventions.

For example, the root of the sandbox contains the /etc directory for configuration files and /usr for multi-user
utilities and applications. In addition to this, each sandbox contains a top-level /app directory, which is where the
application’s own files are located.

XDG base directories

XDG base directories are standard locations for user-specific application data. Popular toolkits provide convenience
functions for accessing XDG base directories. These include :

— Electron : XDG base directories can be accessed with app.getPath
— Glib : provides access to the XDG base directories through the g_get_user_cache_dir (),

g_get_user_data_dir (), g_get_user_config_dir () functions

1.3. Construction 13

https://standards.freedesktop.org/desktop-entry-spec/latest/
https://standards.freedesktop.org/desktop-entry-spec/latest/
https://wiki.archlinux.org/index.php/desktop_entries
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html


Flatpak Documentation

— Qt : provides access to XDG base directories with the the QStandardPaths Class
However, applications that aren’t using one of these toolkits can expect to find their XDG base directories in the
following locations :

Base directory Usage Default location
XDG_CONFIG_HOME User-specific configuration files ~/.var/app/<app-id>/config
XDG_DATA_HOME User-specific data ~/.var/app/<app-id>/data
XDG_CACHE_HOME Non-essential user-specific data ~/.var/app/<app-id>/cache

For example, GNOME Dictionary will store user-specific data in :

~/.var/app/org.gnome.Dictionary/data/gnome-dictionary

Note that applications can be configured to use non-default base directory locations (see Sandbox Permissions).

1.3.3 Dépendances

Flatpak provides a number of different options for how applications can depend on other software. When setting out
to build an application with Flatpak for the first time, it is therefore necessary to decide how application dependencies
will be organized.

This page outlines what the options are, and provides guidance on when to use each one.

Runtimes

As was described in Concepts basiques, runtimes provide basic dependencies that can be used by applications. They
also provide the environment that applications run in. Flatpak requires each application to specify a runtime. Therefore,
one of the first decisions you need to make when building an application with Flatpak, is which runtime it will use.

An overview of the runtimes that are available can be found in the Runtimes disponibles page. There are deliberately
only a small number of runtimes to choose from. Typically, runtimes are picked on the basis of which dependencies
an application requires. If a runtime exists that provides libraries that you plan on using, this is usually the correct
runtime to use !

Astuce : Runtimes require regular maintenance, and application developers should generally not consider creating
their own.

Runtimes are automatically installed for users when they install an application, and build tools can also automatically
install them for you (flatpak-builder’s --install-deps-from option is useful for this). However, if you
do need to manually install your chosen runtime, this can be done in the same way as installing an application, with
the flatpak install command. For example, the command to install the GNOME 3.26 runtime is :

$ flatpak install flathub org.gnome.Platform//3.26

Bundling

One of the key advantages of Flatpak is that it allows application authors to bundle whatever libraries or dependen-
cies that they want. This means that developers aren’t constrained by which libraries are available through Linux
distributions.

When it comes to building an application for the first time, you will need to decide which dependencies to bundle.
This can include :

14 Chapitre 1. Contenu

http://doc.qt.io/qt-5/qstandardpaths.html


Flatpak Documentation

— libraries that aren’t in your chosen runtime
— different versions of libraries that are in your chosen runtime
— patched versions of libraries
— data or other resources that form part of the application

As will be seen, bundled dependencies can be automatically downloaded as part of the build process. It is also possible
to apply patches and perform other transformations.

While bundling is very powerful and flexible, it also places a greater maintenance burden on the application developer.
Therefore, while it is possible to bundle as much as you would like, it is generally recommended to try and keep the
number of bundled modules as low as possible. If a dependency is available as part of a runtime, it is generally better
to use that version rather than bundle it yourself.

The specifics of how to bundle libraries is covered in the Manifests section.

Base apps

Runtimes and bundling are the two main ways that dependencies are handled with Flatpak. They allow applications to
rely on stable collections of dependencies on the one hand, and to have flexibility and control on the other.

However, in some cases, dependencies come as part of a bigger framework or toolkit, which doesn’t fit into a runtime
but which is also cumbersome to manually bundle as a series of individual modules. This is where base apps come in.

Base apps contain collections of bundled dependencies which can then be bundled as part of an application. They don’t
get rebuilt as part of the build process, which makes building faster (particularly when bundling large dependences).
And because each base app is only built once, it is guaranteed to be identical wherever it is used, so it will only be
saved once on disk.

Base apps are a relatively specialized concept and only some applications need to use them (the most common base
app is used for Electron applications). However, if your application uses a large, complex or specialized framework, it
is a good idea to check for available base apps before you start building.

1.3.4 Flatpak Builder

flatpak-builder has already been introduced in Construire votre premier Flatpak and Building Introduction.
This page provides additional detail on how to use flatpak-builder, including the various command options
that are available.

Exporting

flatpak-builder provides two options for exporting an application in order to run it. The first is to export to a
repository, from which the application can be run. The second is to automatically install locally.

Exporting to a repository

The --repo option allows a repository to be specified, for the application to be exported to. This takes the format :

$ flatpak-builder --repo=<repo> <build-dir> <manifest>

Here, <repo> is a path to a repository. If no repository exists at the specified location, the repository will be created.
If the application is already in the specified repository, flatpak-builder will add the build as a new version of
the existing application.

1.3. Construction 15

https://github.com/flathub/io.atom.electron.BaseApp


Flatpak Documentation

Note : By default, flatpak-builder splits off translations and debug information into separate .Locale and
.Debug extensions. These extensions are automatically exported into a repository along with the application.

Installing builds directly

Instead of exporting to a repository, the Flatpak that is produced by flatpak-builder can be automatically ins-
talled locally, using the --install option :

$ flatpak-builder --install <build-dir> <manifest>

This approach has the advantage of skipping the separate install step that is needed when exporting to a repository.

Signing

Every commit to a Flatpak repository should be signed with a GPG signature. If flatpak-builder is being used
to modify or create a repository, a GPG key should therefore be passed to it. This can be done with the --gpg-sign
option, such as :

$ flatpak-builder --gpg-sign=<key> --repo=<repository> <manifest>

Here, <key> is the ID of the GPG key that is to be used. The --gpg-homedir option can also be used to specify
the home directory of the key that is being used.

Though it generally isn’t recommended, it is possible not to use GPG verification. In this case, the
--no-gpg-verify option should be used when adding the repository. Note that it is necessary to become root
in order to update a repository that does not have GPG verification enabled.

1.3.5 Manifests

The input to flatpak-builder is a JSON or YAML file that describes the parameters for building an application,
as well as instructions for each of the modules that are to be built. This file is called the manifest.

This page provides information and guidance on how to use manifests, including an explanation of the most common
parameters that can be specified. It is recommended to have followed the Construire votre premier Flatpak tutorial
before reading this section, and to be familiar with Flatpak Builder.

Manifest files should be named using the application ID. For example, the manifest file for GNOME Dictionary is
named org.gnome.Dictionary.json. This page uses this manifest file, which was introduced in Construire
votre premier Flatpak, for all its examples.

A complete list of all the properties that can be specified in manifest files can be found in the Référence des commandes
flatpack-builder, as well as the flatpak-manifest man page.

Basic properties

Each manifest file should specify basic information about the application that is to be built, including the app-id,
runtime, runtime-version, sdk and command parameters. These properties are typically specified at the
beginning of the file.

For example, the GNOME Dictionary manifest includes :

16 Chapitre 1. Contenu



Flatpak Documentation

"app-id": "org.gnome.Dictionary",
"runtime": "org.gnome.Platform",
"runtime-version": "3.26",
"sdk": "org.gnome.Sdk",
"command": "gnome-dictionary",

Specifying a runtime and runtime version allows that the runtime that is needed by your application to be automatically
installed on users” systems.

File renaming

As was described in the Introduction à Flatpak, exports are application files that are made available to the host, and
include things like the application’s .desktop file and icon.

The names of files that are exported by a Flatpak must prefixed using the application ID, such as org.gnome.
Dictionary.desktop. The best way to do this is to rename these files directly in the application’s source.

If renaming exported files to use the application ID is not possible, flatpak-builder allows them to be renamed
as part of the build process. This can be done by specifying one of the following properties in the manifest :

— rename-icon - rename the application icon
— rename-desktop-file - rename the .desktop filename
— rename-appdata-file - rename the AppData file

Each of these properties accepts the name of the source file to be renamed. flatpak-builder then automatically
renames the file to match the application ID. Note that this renaming method can introduce internal naming conflicts,
and that renaming files in tree is therefore the most reliable approach.

Finishing

Applications that are run with Flatpak have extremely limited access to the host environment by default, but applica-
tions require access to resources outside of their sandbox in order to be useful. Finishing is the build stage where the
application’s sandbox permissions are specified, in order to give access to these resources.

The finishing manifest section uses the finish-args property, which can be seen in the Dictionary manifest file :

"finish-args": [
"--socket=x11",
"--share=network"

],

As was explained in Construire votre premier Flatpak, these two finishing properties give the application access to the
X11 display server and to the network. Guidance on which permissions to use can be found in Sandbox Permissions,
and a full list of finish-args options can be found in Sandbox Permissions.

Cleanup

The cleanup property can be used to remove files produced by the build process that are not wanted as part of the
application, such as headers or developer documentation. Two properties in the manifest file are used for this.

First, a list of filename patterns can be included :

"cleanup": [ "/include", "/bin/foo-*", "*.a" ]

The second cleanup property is a list of commands that are run during the cleanup phase :

1.3. Construction 17



Flatpak Documentation

"cleanup-commands": [ "sed s/foo/bar/ /bin/app.sh" ]

Cleanup properties can be set on a per-module basis, in which case only filenames that were created by that particular
module will be matched.

Modules

The module list specifies each of the modules that are to be built as part of the build process. One of these modules
is the application itself, and other modules are dependencies and libraries that are bundled as part of the Flatpak.
While simple applications may only specify one or two modules, and therefore have short modules sections, some
applications can bundle numerous modules and therefore have lengthy modules sections.

GNOME Dictionary’s modules section is short, since it just contains the application itself, and looks like :

"modules": [
{
"name": "gnome-dictionary",
"sources": [

{
"type": "archive",
"url": "https://download.gnome.org/sources/gnome-dictionary/3.26/gnome-

→˓dictionary-3.26.0.tar.xz",
"sha256": "387ff8fbb8091448453fd26dcf0b10053601c662e59581097bc0b54ced52e9ef"

}
]

}
]

As can be seen, each listed module has a name (which can be freely assigned) and a list of sources. Each source
has a type, and available types include :

— archive - .tar or .zip archive files
— git - Git repositories
— bzr - Bazaar repositories
— file - local file (these are copied into the source directory)
— dir - local directory (these are copied into the source directory)
— script - an array of shell commands (these are put in a shellscript file)
— shell - an array of shell commands that are run during source extraction
— patch - a patch (are applied to the source directory)
— extra-data - data that can be downloaded at install time ; this can include archive or package files

Different properties are available for each source type, which are listed in the Référence des commandes flatpack-
builder.

Supported build systems

Modules can be built with a variety of build systems, including :
— autotools
— cmake
— cmake-ninja, meson
— the « Build API »

A « simple » build method is also available, which allows a series of commands to be specified.

18 Chapitre 1. Contenu

https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://cmake.org/
https://cmake.org/cmake/help/v3.0/generator/Ninja.html
http://mesonbuild.com/
https://github.com/cgwalters/build-api/


Flatpak Documentation

Example manifests

A complete manifest for GNOME Dictionary built from Git. It is also possible to browse all the manifests hosted by
Flathub.

1.3.6 Sandbox Permissions

One of Flatpak’s main goals is to increase the security of desktop systems by isolating applications from one another.
This is achieved using sandboxing and means that, by default, applications that are run with Flatpak have extremely
limited access to the host environment. This includes :

— No access to any host files except the runtime, the app and ~/.var/app/$APPID. Only the last of these is
writable.

— No access to the network.
— No access to any device nodes (apart from /dev/null, etc).
— No access to processes outside the sandbox.
— Limited syscalls. For instance, apps can’t use nonstandard network socket types or ptrace other processes.
— Limited access to the session D-Bus instance - an app can only own its own name on the bus.
— No access to host services like X11, system D-Bus, or PulseAudio.

Most applications will need access to some of these resources in order to be useful. This is primarily done during the
finishing build stage, which can be configured through the finish-args section of the manifest file (see Manifests).

Portals

Portals have already been mentioned in the Introduction à Flatpak. They are a framework for providing access to
resources outside of the sandbox, including :

— Opening files with a native file chooser dialog
— Opening URIs
— Printing
— Showing notifications
— Taking screenshots
— Inhibiting the user session from ending, suspending, idling or getting switched away
— Getting network status information

In many cases, portals use a system component to implicitly ask the user for permission before granting access to a
particular resource. For example, in the case of opening a file, the user’s selection of a file using the file chooser dialog
is interpreted as implicitly granting the application access to whatever file is chosen.

This approach enables applications to avoid having to configure blanket access to large amounts of data or services
and gives users control over what their applications have access to.

Interface toolkits like GTK3 and Qt5 implement transparent support for portals, meaning that applications don’t need
to any additional work to use them (it is worth checking which portals each toolkit supports). Applications that aren’t
using a toolkit with support for portals can refer to the xdg-desktop-portal API documentation for information on how
to use them.

Permissions guidelines

While application developers have control over the sandbox permissions they wish to configure, good practice is
encouraged and can be enforced. For example, the Flathub hosting service places requirements on which permissions
can be used, and software on the host may warn users if certain permissions are used.

The following guidelines describe which permissions can be freely used, which can be used on an as-needed basis,
and which should be avoided.

1.3. Construction 19

https://github.com/flathub/org.gnome.Dictionary/blob/master/org.gnome.Dictionary.json
https://github.com/flathub
https://github.com/flathub
https://flatpak.github.io/xdg-desktop-portal/portal-docs.html


Flatpak Documentation

Standard permissions

The following permissions provide access to basic resources that applications commonly require, and can therefore be
freely used :

— --share=network - access the network
— --socket=x11 - show windows using X11
— --socket=fallback-x11 - show windows using X11, if Wayland is not available
— --share=ipc - share IPC namespace with the host (necessary for X11)
— --socket=wayland - show windows with Wayland
— --device=dri - OpenGL rendering
— --socket=pulseaudio - play sound with PulseAudio

D-Bus access

Access to the entire bus with --socket=system-bus or --socket=session-bus should be avoided, unless
the application is a development tool.

Ownership

Applications are automatically granted access to their own namespace. Ownership beyond this is typically unnecessary,
although there are a small number of exceptions, such as using MPRIS to provide media controls.

Talk

Talk permissions can be freely used, although it is recommended to use the minumum required.

Filesystem access

It is common for applications to require access to different parts of the host filesystem,and Flatpak provides a flexible
set of options for this. Some examples include :

— --filesystem=host - access normal files on the host, not including host os or system internals described
below

— --filesystem=home - access the user’s home directory
— --filesystem=/path/path - access specific paths
— --filesystem=xdg-download - access a specific XDG folder

As a general rule, Filesystem access should be limited as much as possible. This includes using :
— Using portals as an alternative to blanket filesystem access, wherever possible.
— Using read-only access wherever possible, using the :ro option.
— If some home directory access is absolutely required, using XDG directory access only.

The full list the available filesystem options can be found in the Sandbox Permissions. Other filesystem access guide-
lines include :

— The --persist=path option can be used to map paths from the user’s home directory into the sandbox
filesystem. This makes it possible to avoid configuring access to the entire home directory, and can be useful
for applications that hardcode file paths in ~/.

— If an application uses $TMPDIR to contain lock files you may want to add --env=TMPDIR=/var/tmp or
if it uses $TMPDIR to share with processes outside the sandbox you will want a wrapper script that sets it to
$XDG_CACHE_HOME.

— Retaining and sharing configuration with non-Flatpak installations is to be avoided.
As mentioned above the host option does not actually provide complete access to the host filesystem. The main rules
are :

— These directories are blacklisted : /lib, /lib32, /lib64, /bin, /sbin, /usr, /boot, /root, /tmp,
/etc, /app, /run, /proc, /sys, /dev, /var

— Exceptions from the blacklist : /run/media
— These directories are mounted under /var/run/host : /etc, /usr

20 Chapitre 1. Contenu

https://www.freedesktop.org/wiki/Specifications/mpris-spec/


Flatpak Documentation

The reason many of the directories are blacklisted is because they already exist in the sandbox such as /usr or are
not usable in the sandbox.

Device access

While not ideal, --device=all can be used to access devices like controllers or webcams.

dconf access

Until a sandbox-compatible backend is available, applications that require access to dconf can do so with the following
options :

--filesystem=xdg-run/dconf
--filesystem=~/.config/dconf:ro
--talk-name=ca.desrt.dconf
--env=DCONF_USER_CONFIG_DIR=.config/dconf

1.3.7 Guides

Flatpak provides a range of options and helper tools, which allow building applications using the most common
languages and development platforms. These pages provide information on these, and are intended to supplement the
standard guidance provided elsewhere in the Flatpak documentation.

Python

Python applications that use supported build systems like Meson, CMake, or Autotools can be built using the stan-
dard method. However, many Python applications use custom install scripts or are expected to be installed through
Setuptools and pip.

For these cases, flatpak-builder provides the simple buildsystem. Rather than automating the build process,
simple accepts a build-commands array of strings, which are executed in sequence.

For example, the following JSON makes building the popular requests module rather straightforward :

{
"name": "requests",
"buildsystem": "simple",
"build-commands": [
"pip3 install --prefix=/app --no-deps ."

],
"sources": [
{

"type": "archive",
"url": "https://files.pythonhosted.org/packages/source/r/requests/requests-2.18.

→˓4.tar.gz",
"sha256": "9c443e7324ba5b85070c4a818ade28bfabedf16ea10206da1132edaa6dda237e"

}
]

}

Here, build-commands is an array containing the commands required to build and install the module. As can be
seen, in this case pip is run to do this. Here, the --prefix=/app option is important, because otherwise pip

1.3. Construction 21



Flatpak Documentation

would try to install the module under /usr/ which, because /usr/ is mounted read-only inside the sandbox, would
fail.

Note that --no-deps is only used for the purpose of the example - since the requests module has its own dependen-
cies, the build would fail. If multiple dependencies are required, it is better to install them using the method in the next
section, instead.

Building multiple python dependencies

Even though the example above installs, it won’t actually work. This is because the requests module has a number of
dependencies that haven’t been installed :

— certifi
— chardet
— idna
— urllib3

Four dependencies aren’t very many, and could be installed these using the simple method described above. Howe-
ver, anything more complex than this would quickly become tedious.

For these cases, flatpak-pip-generator can be used to generate the necessary manifest JSON. This is a Python script
that takes a package name and uses pip to identify its dependencies, along with their tarball URLs and hashes.

Using flatpak-pip-generator is as simple as running :

$ python3 flatpak-pip-generator requests

This will output a file called python3-requests.json, containing the necessary manifest JSON, which can then
be included in your application’s manifest file.

Electron

Due to the nature of Electron, building Electron applications as Flatpaks requires a few extra steps compared with
other applications. Thankfully, several tools and resources are available which make this much easier.

This guide provides information on how building Electron applications differs from other applications. It also includes
information on the tooling for building Electron applications and how to use it.

The guide walks through the manifest file of the sample Electron Flatpak application. Before you start, it is a good
idea to take a look at this, either online or by downloading the application.

Building the sample application

While it isn’t strictly necessary, you might want to try building and running the sample application yourself.

To get setup for the build, download or clone the sample app from GitHub, and navigate to the /flatpak directory
in the terminal. You must also install the Electron base app :

$ flatpak install flathub io.atom.electron.BaseApp//stable

Then you can run the build :

$ flatpak-builder build org.flathub.electron-sample-app.json --install

Finally, the application can be run with :

22 Chapitre 1. Contenu

https://github.com/flatpak/flatpak-builder-tools/tree/master/pip
https://github.com/flathub/electron-sample-app/blob/master/flatpak/org.flathub.electron-sample-app.json
https://github.com/flathub/electron-sample-app


Flatpak Documentation

$ flatpak run org.flatpak.electron-sample-app

Basic configuration

The first part of the sample application’s manifest specifies the application’s ID. It also configures the runtime and
SDK :

"app-id": "org.flathub.electron-sample-app",
"runtime": "org.freedesktop.Platform",
"runtime-version": "1.6",
"branch": "stable",
"sdk": "org.freedesktop.Sdk",

The Freedesktop runtime is generally the best runtime to use with Electron applications, since it is the most minimal
runtime, and other dependencies will be specific to Electron itself.

The Electron base app

Next, the manifest specifies that the Electron base app should be used, by specifying the base and base-version
properties in the application manifest :

"base": "io.atom.electron.BaseApp",
"base-version": "stable",

Base apps are described in building-basics. Using the Electron base app is much faster and more convenient than
manually building Electron and its dependencies. It also has the advantage of reducing the amount of duplication on
users” machines, since it means that Electron is only saved once on disk.

Note that this base app is for projects using Electron 1.x.x, the most common version at the time of writing. Electron
2.x.x applications should use org.electronjs.Electron2.BaseApp instead.

Command

The command property indicates that a script called run.sh is to be executed to run the application. This will be
explained in further detail later.

"command": "run.sh",

Sandbox permissions

The standard guidelines on sandbox permissions apply to Electron applications. However, Electron does not currently
support Wayland, so for display access, only X11 should be used. The sample app also configures pulseaudio for sound
and enables network access :

"finish-args": [
"--share=ipc",
"--socket=x11",
"--socket=pulseaudio",
"--share=network"

],

1.3. Construction 23



Flatpak Documentation

Build options

These build options aren’t strictly necessary, but can be useful if something goes wrong. env allows setting an array
of environment variables, in this case we set NPM_CONFIG_LOGLEVEL to info so that npm gives us more detailed
error messages.

"build-options" : {
"cflags": "-O2 -g",
"cxxflags": "-O2 -g",
"env": {

"NPM_CONFIG_LOGLEVEL": "info"
}

},

Building Node.js

The next part of the manifest is the modules list. The Electron base app does not include Node.js, so it is necessary to
build Node.js as a module. This tutorial builds Node.js 8.11.1, as this version works with most projects at the time of
writing, but make sure to use whichever version is best for your project.

{
"name": "nodejs",
"cleanup": [

"/include",
"/share",
"/app/lib/node_modules/npm/changelogs",
"/app/lib/node_modules/npm/doc",
"/app/lib/node_modules/npm/html",
"/app/lib/node_modules/npm/man",
"/app/lib/node_modules/npm/scripts"

],
"sources": [

{
"type": "archive",
"url": "https://nodejs.org/dist/v8.11.1/node-v8.11.1.tar.xz",
"sha256":

→˓"40a6eb51ea37fafcf0cfb58786b15b99152bec672cccf861c14d1cca0ad4758a"
}

]
}

Here, the cleanup step isn’t strictly necessary. However, removing documentation helps to reduce final disk size of the
bundle.

The application module

The final section of the manifest defines how the application module should be built. This is where some of the
additional logic for Electron and Node.js can be found.

"name": "electron-sample-app",
"build-options" : {

"env": {
"electron_config_cache": "/run/build/electron-sample-app/npm-cache"

(suite sur la page suivante)

24 Chapitre 1. Contenu



Flatpak Documentation

(suite de la page précédente)

}
},

By default, flatpak-builder doesn’t allow build tools to access the network. This means that tools which rely
on downloading sources will not work. Therefore, Node.js packages must be downloaded prior to running the build.
Setting the electron_config_cache environment variable means that these will be found when it comes to the
build.

The next part of the manifest describes how the application should be built. The simple buildsystem option is used,
which allows a sequence of commands to be specified, which are used for the build. The download location and hash
of the application are also specified.

"buildsystem": "simple",
"sources": [

{
"type": "archive",
"url": "https://github.com/flathub/electron-sample-app/archive/1.0.1.tar.gz",
"sha256": "a2feb3f1cf002a2e4e8900f718cc5c54db4ad174e48bfcfbddcd588c7b716d5b",
"dest": "main"

},

Bundling NPM packages

The next line is how NPM modules get bundled as part of Flatpaks :

"generated-sources.json",

Since even simple Node.js applications depend on dozens of packages, it would be impractical to specify all of them
as part of a manifest file. A Python script has therefore been developed to download Node.js packages with NPM and
include them in an application’s sources.

The Python NPM script requires a package-lock.json file. This contains information about the packages that
an application depends on, and can be generated by running npm install --package-lock-only from an
application’s root directory (the sample example contains a package-lock.json, for reference). The script is then
run as follows :

$ python3 flatpak-npm-generator.py package-lock.json

This generates the manifest JSON needed to build the NPM packages for the application, which are outputted to
a file called generated-sources.json. The content of this file can be copied to the application’s manifest
but, because it is often very long, it is often best to link to it from the main manifest, which is done by adding
generated-source.json as a line in the manifest section, as seen above.

Launching the app

The Electron app is run through a simple script. This can be given any name but must be specified in the manifest’s
"command": property.

/* Wrapper to launch the app */
{

"type": "script",
"dest-filename": "run.sh",

(suite sur la page suivante)

1.3. Construction 25

https://github.com/flatpak/flatpak-builder-tools/tree/master/npm


Flatpak Documentation

(suite de la page précédente)

"commands": [ "npm start --prefix=/app/main" ]
}

Build commands

Last but not least, since the simple build option is being used, a list of build commands must be provided. As can be
seen, npm is run with the --offline option, using packages that have already been cached. These are copied to
/app/main/. Finally the run.sh script is installed to /app/bin/ so that it will be on $PATH :

"build-commands": [
/* Install npm dependencies */
"npm install --prefix=main --offline --cache=/run/build/electron-sample-app/npm-

→˓cache/",
/* Bundle app and dependencies */
"mkdir -p /app/main /app/bin",
"cp -ra main/* /app/main/",
/* Install app wrapper */
"install run.sh /app/bin/"

]

1.4 Debugging

This section includes documentation on how to debug Flatpak apps.

1.4.1 Running debugging tools

Because Flatpak runs each application inside a sandbox, debugging tools can’t be used in the usual way, and must ins-
tead be run from inside the sandbox. To get a shell inside an application’s sandbox, it can be run with the --command
option :

$ flatpak run --command=sh --devel <application-id>

This creates a sandbox for the application with the given ID and, instead of running the application, runs a shell
inside the sandbox. From the shell prompt, it is then possible to run the application. This can also be done using any
debugging tools that you want to use. For example, to run the application with gdb :

$ gdb /app/bin/<application-binary>

This works because the --devel option tells Flatpak to use the SDK as the runtime, which includes debugging tools
like gdb. The --devel option also adjusts the sandbox setup to enable debugging.

Note : The Freedesktop SDK (on which many others are based), includes a range of debugging tools, such as gdb,
strace, nm, dbus-send, dconf, and many others.

gdb is much more useful when it has access to debug information for the application and the runtime it is using.
Flatpak splits this information off into debug extensions, which you should install before debugging an application :

$ flatpak install <runtime-id>.Debug

26 Chapitre 1. Contenu



Flatpak Documentation

When the --devel option is used, Flatpak will automatically use any matching debug extensions that it finds.

It is also possible to get a shell inside an application sandbox without having to install it. This is done using
flatpak-builder’s --run option :

$ flatpak-builder --run <build-dir> <manifest> sh

This sets up a sandbox that is populated with the build results found in the build directory, and runs a shell inside it.

1.4.2 Creating a .Debug extension

Like many other packaging systems, Flatpak separates bulky debug information from regular content and ships it
separately, in what is called a .Debug extension.

When an application is built, flatpak-builder automatically creates a .Debug extension. This can be disabled
with the no-debuginfo option.

1.4.3 Overriding sandbox permissions

It is sometimes useful to have extra permissions in a sandbox when debugging. This can be achieved using the various
sandbox options that are accepted by the run command. For example :

$ flatpak run --devel --command=sh --system-talk-name=org.freedesktop.login1
→˓<application-id>

This command runs a shell in the sandbox for the given application, granting it system bus access to the bus name
owned by logind.

1.5 Publier

Flatpak fournit plusieurs façons pour la distribution d’applications vers les utilisateurs. Pour la plupart des applications
la méthode la plus pratique et efficace est d’utiliser Flathub, qui fournit un large dépôt centralisé d’applications Flatpak.

Alternativement, il est possible d’héberger un dépôt vous-même ou de distribuer les Flatpak comme des bundles d’un
seul fichier.

1.5.1 Dépôt

Les dépôts Flatpak sont le mécanisme principal pour publier des applications, ainsi elles peuvent être installées par
des utilisateurs.

Certains aspects des dépôts sont couverts par d’autres sections de cette documentation. Les commandes basiques pour
ajouter, supprimer et inspecter les dépôts peuvent être trouvées dans la section Utiliser Flatpak. Additionnellement, la
section sur Flatpak Builder couvre la façon la plus commune pour ajouter des applications à un dépôt.

Pour utiliser un dépôt pour publier une application, il est possible d’héberger le vôtre (expliqué dans la prochaine
section, Héberger un dépôt) ou utiliser Flathub, le service principal de publication et d’hébergement des applications
Flatpak.

Software center applications like GNOME Software or KDE Discover allow browsing repositories, and can also dyna-
mically promote new or popular applications. If you use Flathub, the repository will typically have already been added
by users, so adding an application to the repository is sufficient to make it available to them.

1.5. Publier 27

https://flathub.org
http://flathub.org


Flatpak Documentation

fichiers .flatpakref

.flatpakref files can be used in combination with repositories to provide an additional, easy way for users to
install an application, often by clicking on the file or a download link.

Internally, .flatpakref files are simple description files that include information about a Flatpak application. An
example :

[Flatpak Ref]
Name=fr.free.Homebank
Branch=stable
Title=fr.free.Homebank from flathub
Url=https://dl.flathub.org/repo/
RuntimeRepo=https://dl.flathub.org/repo/flathub.flatpakrepo
IsRuntime=false
GPGKey=mQINBFlD2sABEADsiUZUO...

As can be seen, the file includes the ID of the application and the location of the repository that contains it, as well a
link to information about the repository that provides the application’s runtime. .flatpakref files therefore contain
all the information needed to install an application.

Note : Les fichiers .flatpakref incluent une version encodée en base64 de la clé GPG qui a été utilisée pour
signer le dépôt. Elle peut être obtenue avec la commande suivante :

$ base64 --wrap=0 < key.gpg

One advantage of .flatpakref files is that they can be used to install applications even if their repository hasn’t
been added by the user. In this case the repository that contains the application will either be automatically installed,
or the user will be prompted to install it. This will also happen if the necessary runtime isn’t present.

.flatpakref can be used to install applications from the command line as well as with graphical software installers.
This is done with the standard flatpak install command, which accepts both local and remote .flatpakref
files. For example :

$ flatpak install https://flathub.org/repo/appstream/fr.free.Homebank.flatpakref

Ou, si le même fichier a été téléchargé :

$ flatpak install fr.free.Homebank.flatpakref

Publier des mises à jour

Flatpak repositories are similar to Git repositories, in that they store every version of an application by keeping a record
of the difference between each version. This makes updating efficient, since only the difference (or « delta ») between
two versions needs to be downloaded when an update is performed.

When a new version of an application is added to a repository, it immediately becomes available to users. Software
centers are able to automatically check for and install new versions. Those who are using the command line have to
manually run flatpak update to check for and install new versions of any applications they have installed.

1.5.2 Héberger un dépôt

The section on Flatpak Builder describes how to generate repositories. The resulting repository can be hosted on a
web server for consumption by users.

28 Chapitre 1. Contenu



Flatpak Documentation

Important details

Flatpak repositories use archive-z2, meaning that they contain a single file for each file in the application. This means
that pull operations involve a lot of HTTP requests. Since new requests can be slow, it is important to enable HTTP
keep-alive on the web server that is hosting your repository.

Flatpak supports something called static deltas. These are single files that contain all the data needed to go between
two revisions (or from nothing to a revision). Creating such deltas will take up more space on the server, but will make
downloads much faster. This can be done with the build-update-repo --generate-static-deltas op-
tion.

.flatpakrepo files

.flatpakrepo files are a convenient way to let users add a repository. These are simple description files which
contain information about the repository. For example, the Flathub repo file looks like :

[Flatpak Repo]
Title=Flathub
Url=https://dl.flathub.org/repo/
Homepage=https://flathub.org/
Comment=Central repository of Flatpak applications
Description=Central repository of Flatpak applications
Icon=https://dl.flathub.org/repo/logo.svg
GPGKey=mQINBFlD2sABEADsiUZUO...

Here you can see that the repo file contains descriptive metadata, such as the repository name, description, icon and
website. The file also contains information that is needed to add the repository, including a download URL and the
repository’s GPG key.

.flatpakrepo files can be used to add a repository from the command line. For example, the command to add
Flathub using its repo file is :

$ flatpak remote-add --if-not-exists flathub https://dl.flathub.org/repo/flathub.
→˓flatpakrepo

The command line isn’t the only way to add a repository using a .flatpakrepo file - on desktops that support
Flatpak, it is just a matter of clicking the repository file or a download link that points to it.

Note : .flatpakrepo files should include the base64-encoded version of the GPG key that was used to sign the
repository. This can be obtained with the following command :

$ base64 --wrap=0 < key.gpg

1.5.3 Single-file bundles

Hosting a repository is the preferred way to distribute an application, since repositories allow applications to be up-
dated. However, sometimes it can be appropriate to use a single-file bundle. These can be used to provide a direct
download of the application, to distribute applications using removable media, or to send them as email attachments.

Flatpak allows single file bundles to be created with the build-bundle and build-import-bundle com-
mands, which allow an application in a repository to be converted into a bundle and back again :

1.5. Publier 29



Flatpak Documentation

$ flatpak build-bundle [OPTION...] LOCATION FILENAME NAME [BRANCH]
$ flatpak build-import-bundle [OPTION...] LOCATION FILENAME

For example, to create a bundle named dictionary.flatpak containing the GNOME dictionary app from the repository
at ~/repositories/apps, run :

$ flatpak build-bundle ~/repositories/apps dictionary.flatpak org.gnome.Dictionary

You can also set a runtime repo in the bundle :

$ flatpak build-bundle ~/repositories/apps dictionary.flatpak org.gnome.Dictionary --
→˓runtime-repo=https://flathub.org/repo/flathub.flatpakrepo

To import the bundle into a repository on another machine, run :

$ flatpak build-import-bundle ~/my-apps dictionary.flatpak

Alternatively, bundles can also be installed directly without importing them :

$ flatpak install dictionary.flatpak

1.6 Desktop Integration

Requirements & Conventions covers the essential aspects of Linux desktop integration. This page provides further
information on optional desktop integration features. It also provides guidance on how applications can ensure that
their user interfaces fit into the whole range of Linux desktops and distributions.

This information is primarily intended for developers who are new to Linux. However it is also relevant to desktop-
specific Linux applications who wish to target a broader range of Linux environments.

While targeting the Linux desktop ecosystem might seem challenging, the existence of common standards, in combi-
nation with these guidelines, means that supporting the full range of Linux environments needn’t be difficult.

1.6.1 Locale detection

Application toolkits, such as Electron, GTK and Qt, provide built-in support for detecting which locale to use. Other-
wise, the setlocale function can be used.

1.6.2 Portals

Portals are the framework for securely accessing resources from outside an application sandbox. They provide a range
of common features to applications, including :

— Determining network status
— Opening a file with a file chooser
— Opening URIs
— Preventing the device from suspend/sleep/powering off
— Printing
— Sending email
— Showing notifications
— Taking screenshots and screencasts

Toolkits like GTK and Qt provide transparent support for portals. If you are not using one of these toolkits, it is
possible to access the portals API directly. See the portals API documentation for more information.

30 Chapitre 1. Contenu

https://flatpak.github.io/xdg-desktop-portal/portal-docs.html


Flatpak Documentation

1.6.3 Notifications

A number of toolkits and frameworks provide transparent support for Linux desktop notificatoions. This includes
Electron, GTK, KDE and QML.

1.6.4 Status icons

Status icons are the same concept as the system tray or the taskbar on Windows, or menu bar icons on Mac. These are
supported on most Linux distributions, through libappindicator.

A number of Linux distributions don’t show status icons. It is still possible to provide a status icon, and it will be
shown in some distributions. However, in order to ensure compatibility, it is recommended to only use status icons in
a supplementary manner, and not to rely on them as the only mechanism for providing status information or access to
particular features. This includes « minimize to tray » (or equivalent) functionality.

1.6.5 System search

GNOME-based distributions, like CentOS, Fedora, Red Hat Enterprise Linux and Ubuntu, provide the option to inte-
grate with system search, by providing a search provider. This allows application-provided search results to appear in
the Activities Overview.

1.6.6 Window controls

Window controls are the buttons used to close, maximize and minimize windows. These do vary across Linux desktops,
particularly in terms of which controls are shown. Whether applications attempt to follow these variations is up to their
discretion. Providing the exact same controls as used by a particular desktop environment should not be seen as a hard
requirement.

From a user experience perspective, it is important to ensure that window controls appear on the same side of the
window as other desktops. On Linux this is the right side of the window (like Windows).

Applications can rely on system-provided titlebars on Linux, if they don’t want to draw their own window controls.

1.6.7 Window decorations

If your application uses a dark visual style as well as system-provided window decorations, the
GTK_THEME_VARIANT=dark X11 window property should be used, to ensure that window decorations match
the rest of the application window. This can be done by running :

xprop -f _GTK_THEME_VARIANT 8u -set _GTK_THEME_VARIANT dark

1.6.8 Defunct integration options

The following desktop integration options are no longer in use and can be safely ignored :
— Application menus - these are specific to the GNOME desktop. However, they are likely to be phased out in

the future.
— Global menu bar - this was a feature similar to Mac’s menu bar, which was part of Ubuntu’s Unity desktop. This

has been retired. All Linux desktops and distributions expect a menu bar to be shown as part of the application
window, should one be provided (rather than relying on a global menu bar, as on Mac).

1.6. Desktop Integration 31

https://developer.gnome.org/SearchProvider/


Flatpak Documentation

1.7 Documentation de référence

Reference documentation for flatpak, flatpak-builder and libflatpak.

1.7.1 Référence des commandes Flatpak

1.7.2 Référence des commandes flatpack-builder

1.7.3 Runtimes disponibles

Cette page fournit les informations à propos des runtimes Flathub disponibles. Elle est destinée en priorité pour tout
développeur ou distributeur d’applications.

Il y a actuellement trois principaux runtimes disponibles : Freedesktop, GNOME et KDE. Ils sont tous hébergés sur
Flathub.

Freedesktop

Le runtime Freedesktop est un runtime standard qui peut être utilisé pour n’importe quelle application et contient un
ensemble de bibliothèques et services essentiels, dont D-Bus, GLib, PulseAudio, X11 et Wayland.

Runtimes Freedesktop disponibles :

ID Description
org.freedesktop.Platform Runtime
org.freedesktop.Platform.Locale Traduction du runtimes (extension)
org.freedesktop.Sdk SDK
org.freedesktop.Sdk.Debug Information de debogage du SDK (extension)
org.freedesktop.Sdk.Locale Traduction du SDK (extension)
org.freedesktop.Sdk.Docs Documentation du SDK (extension)

GNOME

Le runtime GNOME est approprié pour toute application qui utilise la plateforme GNOME. Il est basé sur le runtime
Freedesktop et ajoute la plateforme GNOME, dont :

— Clutter
— Gjs
— GObject Introspection
— GStreamer
— GVFS
— Libnotify
— Libsecret
— LibSoup
— PyGObject
— Vala
— WebKitGTK

Runtimes GNOME disponibles :

32 Chapitre 1. Contenu

https://flathub.org/


Flatpak Documentation

ID Description
org.gnome.Platform Runtime
org.gnome.Platform.Locale Traduction du runtimes (extension)
org.gnome.Sdk SDK
org.gnome.Sdk.Debug Information de debogage du SDK (extension)
org.gnome.Sdk.Locale Traduction du SDK (extension)
org.gnome.Sdk.Docs Documentation du SDK (extension)

KDE

Le runtime KDE est également basé sur le runtime Freedesktop et ajoute les frameworks QT et KDE. Il est approprié
pour toute application qui utilise la plateforme KDE et la plupart des applications basées sur QT.

Runtimes KDE disponibles :

ID Description
org.kde.Platform Runtime
org.kde.Platform.Locale Traduction du runtimes (extension)
org.kde.Sdk SDK
org.kde.Sdk.Debug Information de debogage du SDK (extension)
org.kde.Sdk.Locale Traduction du SDK (extension)
org.kde.Sdk.Docs Documentation du SDK (extension)

1.7.4 Sandbox Permissions

Sandbox permissions can be configured from an application manifest file (see Manifests). They can also be set with
the build-finish, run and override commands.

The following list includes many of the most useful permission options. A complete list can be viewed using flatpak
build-finish --help.

--socket=x11 Show windows using X11
--share=ipc Share IPC namespace with the host 1

--device=dri Rendu OpenGL
--socket=wayland Show windows using Wayland
--socket=pulseaudio Play sounds using PulseAudio
--share=network Access the network 2

--talk-name=org.freedesktop.secrets Talk to a named service on the session bus
--system-talk-name=org.freedesktop.GeoClue2 Talk to a named service on the system bus
--socket=system-bus Unlimited access to all of D-Bus

Filesystem permissions

Each of the following permissions configure filesystem access, and should be added to --filesystem= :

This is not necessarily required, but without it the X11 shared memory extension will not work, which is very bad for X11 performance.
Giving network access also grants access to all host services listening on abstract Unix sockets (due to how network namespaces work), and these

have no permission checks. This unfortunately affects e.g. the X server and the session bus which listens to abstract sockets by default. A secure
distribution should disable these and just use regular sockets.

1.7. Documentation de référence 33



Flatpak Documentation

host Access all files
home Access the home directory
/some/dir Access an arbitrary path
~/some/dir Access an arbitrary path relative to the home directory
xdg-desktop Access the XDG desktop directory
xdg-documents Access the XDG documents directory
xdg-download Access the XDG download directory
xdg-music Access the XDG music directory
xdg-pictures Access the XDG pictures directory
xdg-public-share Access the XDG public directory
xdg-videos Access the XDG videos directory
xdg-templates Access the XDG templates directory

Paths can be added to all the above filesystem options. For example, --filesystem=xdg-documents/path.
The following permission options can also be added :

— :ro - read-only access
— :rw - read/write access (this is the default)
— :create - read/write access, and create the directory if it doesn’t exist

1.7.5 Under the Hood

This page provides an overview of how Flatpak works internally. While it isn’t necessary to be familiar with this in
order to use Flatpak, some people might find it interesting. Knowing about Flatpak’s architecture also helps to get a
better understanding of how and why it works the way it does, from a user and application developer perspective.

« Git pour les applications »

Flatpak is built on top of a technology called OSTree, which is influenced by and very similar to the Git version control
system. Like Git, OSTree allows versioned data to be tracked and to be distributed between different repositories.
However, where Git is designed to track source files, OSTree is designed to track binary files and other large data.

Internally, Flatpak therefore works in a similar way to Git, and many Flatpak concepts are analagous to Git concepts.
Like Git, Flatpak uses repositories to store data, and it tracks the differences between versions.

With Flatpak, each application, runtime and extension is a branch in a repository. An identifier triple, such as com.
company.App/i386/stable is a reference to that branch. The output of a Flatpak build process is a directory of
files which is committed to one of these branches.

When an application is installed with Flatpak, it is pulled from the remote into a new branch in a local repository. Links
are then generated which point from the right places in the filesystem to the application’s files in the repository (these
are hard links, which are fast to resolve and disk space efficient). In other words, every application that is installed is
stored in a local version control repository, and is then mapped into the local filesystem.

Version tracking is therefore a core part of Flatpak’s architecture, and this makes updating software to the latest version
very efficient. Versioning also makes rollbacks possible, so it’s easy to go back to a previous version, should that be
required.

Storing applications in a local OSTree repository has other advantages. For example, it allows files that are stored on
disk to be deduplicated, so the same file that belongs to multiple applications (or runtimes) is only stored once.

Underlying technologies

Flatpak utilises a number of pre-existing technologies. These include :

34 Chapitre 1. Contenu

https://ostree.readthedocs.io/en/latest/manual/introduction/
https://en.wikipedia.org/wiki/Hard_link


Flatpak Documentation

— The bubblewrap utility from Project Atomic, which lets unprivileged users set up and run containers, using
kernel features such as :
— Cgroups
— Namespaces
— Bind mounts
— Règles Seccomp

— systemd to set up cgroups for sandboxes
— D-Bus, a well-established way to provide high-level APIs to applications
— The OCI format from the Open Container Initiative, as a convenient transport format for single-file bundles
— The OSTree system for versioning and distributing filesystem trees
— Appstream metadata, to allow Flatpak applications to show up nicely in software center applications

1.7.6 libflatpak API Reference

Flatpak comes with a library for use by software installers. The reference documentation for libflatpak can be found
here : https://flatpak.github.io/flatpak/reference/html/index.html

1.7. Documentation de référence 35

https://github.com/projectatomic/bubblewrap
http://www.projectatomic.io/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.opencontainers.org/
https://ostree.readthedocs.io/en/latest/
https://www.freedesktop.org/software/appstream/docs/
https://flatpak.github.io/flatpak/reference/html/index.html

	Contenu
	Introduction à Flatpak
	Débuter
	Construction
	Debugging
	Publier
	Desktop Integration
	Documentation de référence


